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Abstract

Planar structures account for a significant portion of indoor man-made environments.
With advances in the field of Augmented Reality (AR), the automatic detection of pla-
nar surfaces has become essential for recent AR applications. Often, these applications
operate under a strict temporal constriction, also referred to as real-time. Naturally, this
time restriction applies to the integrated plane detection algorithm as well. The technol-
ogy that provides real-time plane detection already exists. However, for different reasons,
these devices are often not suitable for the average consumer. This motivates the uti-
lization of consumer off-the-shelf hardware. Additionally, an appropriate plane detection
algorithm is needed. Decades of research yield a wide variety of different approaches.
As these methods are predominantly evaluated scientifically, the real-world applicability
poses an open question. Moreover, the inherent incomparability of most plane detection
algorithms renders a selection non-trivial.

This work evaluates the real-world applicability of real-time plane detection algo-
rithms. After considering current state-of-the-art plane detection algorithms, we select
four algorithms, namely RSPD [2], OPS [57], 3D-KHT [32], and OBRG [59]. In a similar
approach, we select the 2D-3D-S dataset and compose the novel FIN dataset. We intro-
duce a definition of real-time and perform experiments on both datasets. Subsequently,
we compare the respective results. The results show that 3D-KHT is the only real-time
applicable plane detection algorithm in a realistic environment.
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Chapter 1
Introduction

Man-made environments usually consist, to a large extent, of planar structures. As the
Manhattan-world assumption dictates, the general alignment of most urban scenes, both
indoors and outdoors, is based on a three-dimensional cartesian grid [10]. Thus, the
assumption indicates that urban scenes are primarily comprised of planar surfaces which
lie orthogonal to each other.

Due to this large amount of planes in everyday environments, automatic detection
of these planes is growing in relevance: Plane detection is an essential component in
numerous Augmented or Virtual Reality (AR/VR) applications and systems [26, 55].
Therein, planes are vital for general scene understanding as they lay the foundation for
scene reconstruction [1], object recognition [43, 46], video games [9], and are even used in
applications that support people with disabilities, e.g. visual impairments [36, 52].

Many of these applications operate under specific time constraints: The application
could navigate a visually impaired person into a nearby wall if the plane detection is
delayed, just as a noticeable lag in a video game caused by plane detection could spoil
the user experience. Strict temporal constraints are often broadly referred to as real-time.
The definition of real-time usually derives from the frequency of new sensor updates [12].
Since the process of plane detection is often an integral part of these systems [61, 11, 27],
these constraints also apply there.

Real-time plane detection is already possible, though expensive hardware is often
needed as a sensor’s price increases with its precision and included functionality. For in-
stance, AR devices like the Microsoft HoloLens 2 and imaging laser scanners like the Leica
BLK360 produce very precise representations of the surrounding environment. Moreover,
the HoloLens 2 can perform plane detection as part of its Scene Understanding Software
Development Kit1. Therein, a recorded environment is represented as a dense triangle

1https://learn.microsoft.com/en-us/windows/mixed-reality/design/scene-understanding

https://learn.microsoft.com/en-us/windows/mixed-reality/design/scene-understanding
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mesh in which planes are detected and subsequently assigned a plane category, e.g., walls,
ceilings, and floors. Nevertheless, the affordability of the BLK360 is questionable with a
starting price of ∼$19.000. While the starting price of the HoloLens 2 may be affordable
at ∼$3.500, due to the software being closed source, we still consider the HoloLens 2
non-practical.

Through this lack of affordability and practicability of high-end sensors, the usage
of consumer off-the-shelf hardware is gaining interest. With AR development platforms
like ARKit2 or ARCore3, it is generally possible to perform AR plane detection on mobile
phones4. However, the choice of development environment and the used sensor is arbitrary.
Being representatives for consumer off-the-shelf hardware, we use the Intel RealSense
cameras T265 and D455 (see Section 2.2) in this work. The cameras have a combined
starting price of ∼$600 and an open source software development kit, namely librealsense5,
is provided.

In addition to the used sensors, selecting an appropriate plane detection algorithm is
important as well. Decades of research on plane detection yielded numerous algorithms,
and many are reported to be real-time applicable by the respective authors [32, 48, 63, 66,
17, 29]. While generally achieving the same goal, i.e., the detection of planar structures,
notable differences in methodology exist: We can usually differentiate between algorithms
by their type of input, the format of detected planes, additional hardware requirements,
and core algorithm (see Section 2.4). Furthermore, most algorithms have been evaluated
using different datasets and metrics. It is, therefore, impossible to assess the real-world
applicability of most algorithms through the reported findings because the corresponding
authors evaluated them in a scientific context and environment.

1.1 Goals
This thesis deals with a uniform comparison of plane detection algorithms. Through
this comparison, we aim to evaluate the applicability of real-time plane detection on
consumer off-the-shelf hardware such as the Intel RealSense cameras. The answer to this
question will consequently determine which algorithm is most suitable. This work focuses
on plane detection in complete environments, e.g. an entire room instead of just parts
thereof. Furthermore, we restrict ourselves to plane detection in indoor environments as
Augmented Reality is usually performed indoors.

2https://developer.apple.com/augmented-reality/arkit/
3https://developers.google.com/ar
4Supported devices of ARCore: https://developers.google.com/ar/devices#google play devices
5https://github.com/IntelRealSense/librealsense
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1.2 Structure
The following chapter presents the basics or background information necessary for this
work. In Chapter 3, our concept of achieving the goals mentioned above is detailed.
Therein, we prepare the evaluation by selecting suitable algorithms and datasets. A
definition of real-time closes the chapter. Chapter 4 specifies the implementation details
for the concept in the previous chapter. We outline the general system setup, the necessary
steps included in the implementation of each algorithm, and the dataset modifications
needed to conduct quantitative experiments. The uniform comparison of the selected
algorithms is conducted in Chapter 5. Moreover, the results thereof are presented and
analyzed. Based on the obtained results, we conclude in Chapter 6. Lastly, the limitations
thereof are considered, and this work closes with the prospects of future research.
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Chapter 2
Background

In this chapter, we present relevant literature needed to completely understand the pro-
posed concept of chapter 3. The structure is inspired by the system overview pictured in
Figure 3.1: First, we explain different formats of data, separated by input and output.
Then, we provide details about the used sensors, followed by a general introduction to
SLAM algorithms, and a subsequent outline of the SLAM algorithm used in this work
(see Subsection 2.3). Thereafter, we detail the plane detection algorithms that resulted
from our review of the current literature after introducing three core functionalities of
plane detection. Lastly, we outline the list of datasets we took into consideration, and
finish with an explanation of metrics used in the evaluation of Chapter 5.

2.1 Data Formats
In the following chapters, we often refer to different data representations. This section
provides detailed information about these data representations while differentiating be-
tween the input and output of a plane detection algorithm. In this work, note that an
algorithm’s input is equivalent to the output of the sensors or the SLAM algorithm.

2.1.1 Common Input Types
As described in Chapter 1, specialized sensors are needed to record the environment.
Through recording, the environment is represented through different kinds of data. Usu-
ally, this data representation of the recorded environment falls into one of the following
categories:

• unorganized or unstructured point cloud (UPC)



2.1. Data Formats

• organized or structured point cloud (OPC)

• Depth-Image (DI)

• RGB-Image (RGBI)

The input types are compared in Table 2.1. Both the organized and the unorganized
point cloud store 3D coordinates. The fundamental difference between UPC and OPC
is their format. For instance, in the popular point-cloud-library data format1, each point
cloud has a width and a height. The width of a UPC is the number of included points,
while the height equals 1. In contrast, the width and height of an OPC depend on
the resolution of the recording camera. For instance, if a camera has a resolution of
640x480, the resulting organized point cloud would have a width and height of 640 and
480, respectively. Another distinguishing factor is that the organized point cloud can only
represent the environment from one specific viewport at a time, which can lead to point
occlusion, e.g., the wall behind a monitor. Moreover, an OPC can include missing or
invalid data due to the limitations of the sensor. In contrast, UPCs are neither limited
to a specific viewport nor do they allow for missing points.

When considering images, a differentiation between RGB images and depth images
has to be made. Depth images are inherently similar to organized point clouds, given
their resolution and two-dimensional structure. The primary difference is that the matrix
stores distances to the sensor instead of 3D coordinates. RGB images are, like Depth
images, stored as a 2D Matrix but instead of distances or coordinates, the matrix stores
values that describe the color of a pixel. Usually, this means that each pixel stores a triple
that describes a specific color by the amount of included red, green, and blue.

Table 2.1: Possible inputs for plane detection algorithms columns dedicated to the stored
data, the memory layout, and whether the input type allows for invalid values.

Input Type Value Types Memory Layout 0 or NaN

OPC 3D Coordinates 2D Matrix N
UPC 3D Coordinates 1D Array Y
DI Distances to Sensor 2D Matrix Y

RGBI RGB 2D Matrix Y

It is worth noting that, in the literature, the terms ”depth image”, ”depth map” and
”organized point cloud” are used interchangeably.

1http://pointclouds.org/documentation/tutorials/pcd file format

6
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Furthermore, some methods are specifically designed to accept Light Detection And
Ranging (LiDAR) point clouds. Since the underlying data is, essentially, an unorganized
point cloud, we do not differentiate between these two types of data.

2.1.2 Common Output Formats
The format of the detected planes has to conform to the specific application. For instance,
an architectural remodeling application would require the output to be able to contain
non-rectangular shapes and holes. An algorithm that returns a set of planes represented
by their convex hull would not be appropriate because it would fail to correctly represent
planes like the top of a corner desk or a wall with a doorway.

Being related to the input format, the output of plane detection algorithms can be
clustered as follows:

• The cartesian plane equation parameterized by its normal vector n and/or its dis-
tance to the origin d, and

• 2D inliers (2D-IN), or

• 3D inliers (3D-IN).

A common output format is a plane parameterized by its normal vector n and its
distance to the origin d. This representation describes a plane as infinitely dense and
unbound, if no further information is provided, e.g., extents in certain directions.

We differentiate between the plane inliers according to the way, individual values are
accessed. 3D inliers are a set of 3D coordinates that represent a plane in an unorganized
point cloud. Like the point cloud itself, the inliers are accessed through their 1D index
within the set. In contrast, 2D inliers are a set of indices that correspond to values in
an organized point cloud, depth image, or RGB image. Moreover, some methods return
a set of segmentation masks, which we also refer to as 2D inliers. Note that we include
organized point clouds in the 2D case of inliers even though the values inside are three-
dimensional, as the access thereof is still grid-like.

2.2 Intel Realsense
In this work, we use both the Intel RealSense tracking camera T265 and the RGB-Depth
(RGB-D) camera D455. A tracking camera is generally used to observe the environment
and usually has a wider field of view (FOV). The main motivation for using RGB-D
cameras is depth perception. The primary differences and similarities between the T265
and the D455 are reported in Table 2.2. With two fisheye lenses and two imaging sensors,
the T265 and D455, respectively, are considered stereo cameras. Moreover, the D455 has

7
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additional RGB and infrared (IR) sensors. The combination of IR and two imaging sensors
is used to produce depth images. With a diagonal field of view (D-FOV) of 163°, the T265
has a much wider D-FOV than the D455, which only has a D-FOV of 111°. The maximum
frames per second (FPS) of 90 of the D455 are determined by the individual FPS of both
its imaging sensors, and its IR sensor. It is worth noting that the FPS decreases with
increasing sensor resolution and that 90 FPS is only reached with a resolution of 640x480.
In contrast, the T265 has a maximum FPS of 30. Furthermore, both cameras have an
integrated Inertial Measurement Unit (IMU) which is used to gather information like
monentum, orientation, and acceleration.

Intel provides a software development kit, namely RealSense SDK, which allows easy
and efficient use of the cameras. The SDK runs on both Windows and Ubuntu, and a
Robot Operating System2 (ROS) adaptation is also provided in Intel’s Github repository3.

Table 2.2: Intel RealSense T265 and D455 camera specifications. The resolution and
FPS columns report the respective maximum values. More information and the complete
Datasheets can be found at https://www.intelrealsense.com/.

Camera Image Type Resolution D-FOV Shutter Price FPS

D455 Stereo RGB-D 1280x720 111° global 419$ 90
T265 Stereo Tracking 848 x 800 163° global 199$ 30

2.3 Simultaneous Localization and Mapping
Simultaneous Localization And Mapping (SLAM) algorithms aim to solve a usual problem
in the field of unmanned robotics: A robot finds itself in an unknown environment and
attempts to build a coherent map while keeping track of its location. It uses use-case-
specific sensors to obtain a snapshot of its current surroundings, which it then uses to
update and enhance its known map (Mapping). The robot simultaneously attempts
to accurately estimate its position based on the updated map (Localization). The new
information about its position is processed during the next map update. This functionality
of building a comprehensive map of the recorded environment is also employed by many
modern AR systems to gain spatial awareness.

Over decades of research, varieties of different (combinations of) sensors have been em-
ployed to solve this problem more accurately and efficiently. Internal odometry sensors
alone can be unreliable if the robot moves over uneven or slippery surfaces. Visual sen-
sors are, therefore, integrated into many SLAM methods, making them a Visual-SLAM

2https://www.ros.org/
3https://github.com/IntelRealSense/realsense-ros
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(VSLAM) method. Therein, the methods can be further divided into visual-only, visual-
intertial, and RGB-D SLAM [37].

Visual-only SLAM algorithms are solely based on the input of a camera. Popular
VSLAM algorithms include ORB-SLAM2 [40], MonoSLAM [13], and DSO-SLAM [16].

Visual-intertial SLAM methods integrate additional sensor information from an In-
ertial Measurement Unit (IMU). The IMU provides information about the rotation, ac-
celeration, and magnetic field around the device. These types of information generally
aid the estimations based on visual input. However, the IMU data needs additional es-
timations, which increases the SLAM’s complexity. ORBSLAM3 [8] and Robust Visual
Inertial Odometry (ROVIO) [6] are visual-intertial-based SLAM methods.

Lastly, RGB-D SLAM methods combine a monocular RGB camera and a depth sen-
sor. This combination removes additional calculations initially needed to obtain depth
information. Dense Visual Odometry (DVO) [28] and RGBDSLAMv2 [15] are instances
of popular RGB-D SLAM methods.

Real-Time Appearance-Based Mapping
Real-Time Appearance-Based Mapping (RTAB-MAP) is a VSLAM system with an op-
tional IMU input, making it a visual-intertial SLAM. RTAB-MAP’s general workflow is
shown in Figure 2.1. All these inputs are combined during a synchronization step and
passed to RTAB-MAP’s Short-Term-Memory (STM). The STM assembles a new node
from the new inputs and inserts it into the map graph. Based on the newly inserted
node, RTAB-MAP attempts to determine if the current location has already been visited
earlier, also known as loop closure. If a loop closure is detected, i.e., RTAB-MAP detects
the re-visiting of a known location, the map graph is optimized and thus minimized. In
addition, the global map is reassembled in correspondence with the new information. The
resulting map is published in the form of an unorganized point cloud.

Figure 2.1: Block diagram of RTAB-MAP’s system architecture. Taken from [31, Fig. 1]

9
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2.4 Core Algorithms
The field of plane detection has been around for decades. Most methods of detecting
planar regions are based on one of three main categories [32, 2]:

• Hough Transform,

• RANSAC, and

• Region Growing.

These categories of algorithms are fundamentally different. Hence, it is helpful to
explain the difference. In the following subsections, we detail each one by providing
general information and a subsequent explanation in the context of plane detection.

2.4.1 Hough Transform
The original motivation behind the Hough transform was detecting lines in images [19].
All points are sequentially processed via a voting procedure to detect the best-fitting line
over a set of 2D points. Multiple lines with different orientations are fit through each
given point p. Because a line in slope-intercept form parallel to the y-axis would lead to
an infinite slope, the Hesse normal form is chosen as the primary line representation[14].

In Hesse normal form, an individual line can be parameterized with a pair (r, θ), with
r being the orthogonal distance origin to the plane and θ being the angle between the
x-axis and the line that connects the origin to the closest point on the line. This tuple is
also called a Hough Space in this context.

Votes are then cast on the corresponding value of θ, depending on the number of
inliers within a specific Hough Space (r, θ). The map that connects the votes to each θ is
called an accumulator. Finally, the best-fitting line is determined by the number of votes
it received.

In the context of plane detection in 3D point clouds, a plane would be uniquely
identified by the triple (ρ, θ, φ), with ρ being the orthogonal distance from the origin to
the plane, θ being the azimuthal angle, and φ being the inclination. Since more parameters
are needed to describe a plane in 3D, the accumulator must be adapted. Therefore, a
three-dimensional accumulator is used. The performence of different shapes thereof had
been discussed by Borrmann et al. [7].

2.4.2 RANSAC
RANSAC (Random Sample Consensus) has been researched for decades. While many use
cases revolve around image processing, it is also heavily employed in many plane detection
algorithms[57, 64, 4]. RANSAC is an iterative process. Each iteration randomly samples

10



2.5. Plane Detection Algorithms

a certain amount of data points and fits a mathematical model through them. The level
of outliers determines the quality of the obtained model and preserves the best overall
model.

Within the context of plane detection in 3D point clouds, an approach could involve
random sampling of 3 points, fitting a plane through them, and counting the number
of points within a certain range of the plane[64]. The model, in that case, could be a
cartesian plane equation.

2.4.3 Region Growing
Region Growing methods are often used in the field of image or point cloud segmentation
[45, 59]. Region growing-based segmentation methods aim to grow a set of disjoint regions
from an initial selection of seed points. The regions increase in size by inserting neighbor-
ing values based on an inclusion criterion. The quality of the resulting regions depends
on the choice of seed points, e.g., a very noisy seed point could decrease overall quality
[38]. In the context of this work, a criterion for region growth could be the distance or
curvature between a region and its adjacent data points.

2.5 Plane Detection Algorithms
The following subsections detail the necessary background knowledge of all the plane
detection algorithms mentioned in this paper. Aside from the functionality of a method,
we give relevant higher-level information, e.g., the expected input format and the proposed
output format.

2.5.1 Robust Statistics approach for Plane Detection
Robust Statistics approach for Plane Detection (RSPD) [2] is based on region growing.
After taking an unorganized point cloud as input, the procedure is divided into three
phases: Split, Grow and Merge (see Figure 2.2).

Split The authors propose to use an octree to recursively subdivide the point cloud. The
subdivision is repeated until every leaf node contains less than a threshold ε corresponding
to the minimum number of points per leaf. The authors propose a value of ε = 0.1%
of the entire point cloud. Alternatively, the subdivision terminates if a node reaches the
maximum depth level lO = 10. Note that this parameter is not referenced in [2]. However,
it is used in the official implementation4. The subdivision is followed by a planarity test [2,
Section 3.2], during which the octree is traversed bottom-up. It is comprised of three
individual tests:

4https://github.com/abnerrjo/PlaneDetection
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1. A distance test,

2. a normal divergence test, and

3. an inlier to outlier ratio test.

These tests are influenced by corresponding parameters: The distance test is passed if
the point-to-plane distance is smaller than the Maximum Distance to Plane (MDP). If
the normals of a patch deviate less than the Maximum Normal Deviation (MND), the
second test is passed. Lastly, a patch is discarded if its percentage of outliers exceeds the
Maximum Outlier Ratio (MOR). If all eight children of a node n are leaf nodes that fail
the planarity test, n replaces its children and becomes a leaf node itself. This procedure
is repeated exhaustively or until the root of the octree is reached.

Grow In preparation for the growth phase, a neighborhood graph over the entire point
cloud is created. Every node within the graph represents one point, and an edge between
two nodes exists only if a nearest-neighbor search with a neighborhood size k detects both
points being in the same neighborhood. The authors use a neighborhood size of k = 50.

The graph construction is subsequently followed by a breadth-first-search, during
which a point x is inserted into a planar patch p if it satisfies the following conditions:

• x is not included in any patch and

• x satisfies the inlier conditions for p:

– The distance d of x to p is smaller than a threshold θd (see Eq. 2.1), and
– the angle φ between the normals vectors of x and p is less than a threshold θa

(see Eq. 2.2).

d = |(x− p.center) · p.normal| < θd (2.1)
φ = arccos(|x.normal, p.normal|) < θa (2.2)

Merge In the last phase, the previously grown patches are merged. Two planar patches
P1 and P2 can be merged, if the following conditions are met:

• The octree nodes of P1 and P2 are adjacent,

• their normal vectors diverge less than a tolerance and

• at least one inlier of P1 satisfies the inlier conditions(see Eq. 2.1+2.2) from P2 and
vice versa.

This phase returns all maximally merged planar patches, i.e. the final planes.

12
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Figure 2.2: The RSPD plane detection pipeline. Taken from [2, Figure 2].

2.5.2 Oriented Point Sampling
Oriented Point Sampling (OPS) [57] accepts an unorganized point cloud as input.

First, a sample of points is uniformly selected from the entire point cloud. Sample
sizes of αs ∈ [0.3%, 3%] are used in the Evaluation in [57, Table 3]. The normal vectors of
these points are estimated using singular value decomposition (SVD) and the k-nearest-
neighbors (KNN), which are obtained using a k-d tree. An inverse distance weight
function is employed to prioritize neighboring points that are closer to the sample of
which the normal vector is currently being estimated.

After normal estimation, one-point-RANSAC is performed. Usual RANSAC imple-
mentations sample three points to fit a plane [64, 5]. However, OPS fits a plane with only
one sample point and its normal vector and counts the number of points where the distance
to the plane is smaller than a minimum-distance parameter θh. Moreover, this number of
inliers must exceed a minimum plane size threshold θN , for a plane to be accepted. Once
a plane with the most inliers is obtained, its normal vector is re-estimated using SVD on
all inliers, and all inliers are removed from the point cloud. Furthermore, the number of
needed iterations I is adaptively determined in each iteration, see Equation 2.3.

I = log(1− p)
log(1− (1− e)) , (2.3)

where e is the ratio of outliers left in the point cloud, and p is a tuneable parameter that
corresponds to the likelihood that a random sample includes no outliers. This process is
repeated until the number of remaining points falls below a predefined threshold θN . After
termination, smaller detected planes are merged if they pass a coplanarity test. After a
successful merging of planes, the normal of the resulting plane is calculated via singular
value decomposition.

2.5.3 3D Kernel-based Hough Transform
With the 3D Kernel-based Hough Transform (3D-KHT), Limberger and Oliveira [32]
propose a Hough transform-based plane detection method,that accepts unorganized point
clouds as input.
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The point cloud is spatially subdivided. The authors propose the usage of octrees over
k-d trees because the k-d tree lacks efficiency in creation and manipulation. Furthermore,
the octree succeeds in capturing the shapes inside the point cloud, while the k-d tree does
not. The octree level, at which the algorithm starts to check for approximate coplanarity
under nodes is adjusted through the corresponding parameter slevel.

Approximate coplanarity of a point cluster is evaluated based on its eigenvalues and
two parameters sα, sβ. Therein, sα corresponds to the tolerance regarding noise, and sβ
corresponds to the tolerance regarding the anisotropy of the included points. The authors
report good results with sα = 25 and sβ = 6.

Each leaf inside the octree continues subdividing until the points inside a leaf node are
considered approximately coplanar, or the number of points is smaller than a minimum-
points threshold sps. The authors recommend sps = 30 for large point clouds. However,
no definition of large in this context is given. After the approximately coplanar nodes are
refined by removing outliers, a plane is fit through the remaining points.

This plane can, in polar coordinates, be uniquely described by a triple (ρ, θ, φ). In-
spired by Borrmann et al. [7], an accumulator ball (Fig. 2.3b) is used for the voting pro-
cedure because the cells in polar regions are smaller (and therefore contain fewer normal
vectors) in three-dimensional accumulator arrays, as portrayed in Figure 2.3a. Further-
more, the discretization of the accumulator is determined by tuneable parameters, namely
φnum and ρnum. No additional parameter is employed for the discretization of ρ, as this
is allocated as needed during the voting procedure. The authors use φnum = 30 and
ρnum = 300 during their evaluation.

(a) (b)

Figure 2.3: (a) Accumulator array taken from [7, Figure 3]. (b) Accumulator ball used in
3D-KHT, taken from [32, Figure 5].

During the voting procedure, votes are cast on previously calculated approximately
coplanar clusters. When casting a vote on a given cluster c with its plane (represented by
(ρ, θ, φ)), the corresponding entry in the accumulator ball is updated. With this update,
its neighboring clusters also receive a vote determined by the uncertainty value of c. Due
to the non-discrete values of uncertainty, the votes are floating-point values as well.
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All Peaks within the accumulator ball are detected in the last step. Furthermore,
an intermediary smoothing step is performed by merging adjacent peaks inside the ac-
cumulator. If a cell c in the accumulator has not yet been visited during iteration, c is
considered a peak. In addition, c and its 26 neighboring cells are tagged as visited. That
way, the most dominant plane, i.e., the one with the most votes, is detected first. Finally,
the detected planes are sorted by the number of different clusters that voted for them.

2.5.4 Octree-based Region Growing
Octree-Based Region Growing (OBRG) [59] employs region growing to detect planes in
UPC.

First, an octree is used to recursively subdivie an unorganized point cloud. An octree
node n repeatedly subdivides itself into eight children until the level of n supersedes a
predefined maximum subdivision value or if the amount of contained points in n is less
than a predefined minimum of included points. Saliency features are calculated for every
leaf node in preparation for the region growing step: A normal vector is obtained by
performing a principle component analysis (PCA) on the points inside each leaf node.
The best-fitting plane of each leaf is defined by the mean normal vector and its center
point. A residual value is obtained by taking the root-mean-square (RMS) of the distance
of all included points to the plane.

Figure 2.4: The OBRG plane detection pipeline. Taken from [59, Figure 1].

For the region growing phase, all leaf nodes are selected as individual seed points.
Starting from the seed with the lowest residual value, a neighboring leaf node n is inserted
into the region if n does not belong to any region and the angular divergence between both
normal vectors is smaller than a predefined threshold θang. Values between 3.5 degree and
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15 degree were used during the evaluation [59, Tables 1, 4, 7]. Furthermore, if a leaf node
is inserted into a region, it is also considered a starting point for a future iteration, if its
residual value is lower than the corresponding threshold θres. Small values at a maximum
of 0.05(m) are reported. If a region cannot be expanded, it is marked as detected, if its
number of inliers exceeds a threshold θM .

Lastly, a refinement step is employed. For efficiency reasons, it is only performed
on voxels at the edge of segments. Fast refinement (FR) is performed on regions that
succeed in a planarity test, i.e., 70%-90% (θp) of included points fit the best plane [59,
Section 3.4]. FR is leaf-based, and all previously unallocated neighboring nodes are added
to the region if the point-to-plane distance is smaller than a distance threshold θd. General
refinement (GR) is performed on regions that are considered non-planar. In contrast to
the fast refinement, GR is point based. Therefore, points from neighboring and previously
unallocated leaf nodes are considered and inserted into the region if they, too, satisfy the
inlier criterion. The refinement process returns a complete set of planar regions.

2.5.5 Probabilistic Agglomerative Hierarchical Clustering
Probabilistic Agglomerative Hierarchical Clustering (PEAC) [17] is a plane detection al-
gorithm that takes an organized point cloud as input. The agglomerative hierarchical
clustering is based on the line regression algorithm[41, Section III.B]. The primary dif-
ference is that, instead of a double linked list, PEAC operates on a graph G.

First, the input organized point cloud is divided into non-overlapping nodes through
the initialization of G. The nodes have a pre-determined height and width and thereby
cluster a set of points. Then, G is refined by removing the following types of nodes and
corresponding edges [17, Section III.A]:

1. Nodes that contain NaN or 0 values, e.g., missing data,

2. nodes that contain at least one point that is depth-discontinuous with its four neigh-
bors,

3. non-planar nodes, and

4. nodes that share an edge with two different planes, e.g., the corners of walls.

During this refinement step, all points inside a node share a common plane normal.
The agglomerative hierarchical clustering step starts with the construction of a data

structure that contains the nodes of G, sorted in ascending order by their MSE. The
following steps are then repeated exhaustively. First, the node v that currently has the
smallest MSE is merged with one of its neighbors u that minimizes the merged MSE
MSEmerge. If the MSEmerge exceeds a threshold θMSE, then a plane is found and the
merged node is removed from G. Otherwise, the merged node is added back to G, joining
the edges of v and u.
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Lastly, the detected planes are refined. Due to the clustering of nodes that contain a
set of points, certain types of artifacts can occur [17, Section IV]:

• Sawtooth,

• unused data points, and

• over-segmentation.

First, if not all neighbors of a node v belong to the plane of v, all points of v are added
to a queue QRG. Then, region growing is performed on the points inside QRG. Therein,
the 4-connected neighbors of the current seed are observed. A neighboring point n of a
region is moved to other regions, if the distance thereto is shorter than the distance to its
current region. Additionally, n is inserted into QRG. The region growing is followed by
another agglomerative hierarchical clustering step.

2.5.6 Fast Cylinder and Plane Extraction
Fast Cylinder and Plane Extraction (CAPE) [45] is a region growing-based algorithm
that detects planes and cylinders in organized point clouds. The authors propose this
algorithm as an extension of their Probabilistic Visual Odometry Framework [44].

In preparation for the region growing step, the cloud is subdivided into patches of
pre-defined size P , similar to the graph initialization of PEAC (see Section 2.5.5). A P
value of 20x20 was used in their evaluation [45, Section V.A]. Then, the planarity of the
patches is tested, wherein a patch is considered non-planar, if:

• The amount of NaN or 0 points exceeds a threshold, or

• the patch has depth discontinuities.

Therein, only the pixels on an axis-aligned cross through the center of the patch are
checked for depth discontinuities. A plane is then fit through the patch inliers by perform-
ing principle component analysis. The plane’s MSE corresponds to the lowest eigenvalue,
and the plane’s normal vector is its eigenvector. Patches are considered planar if the mean
depth deviates less than a threshold θdepth from the standart deviation of the points inside
the patch.

The normal vectors are converted from cartesian to spherical coordinates, thereby
being described by a polar angle, and an azimuth angle. A histogram H is built by
assorting these normals into bins. This histogram is subsequently used for the region
growing step. First, a set of patches C of the most frequent bin in H are obtained.
The region growing terminates if |C| is smaller than a threshold k1. The patch with the
smallest MSE out of C is chosen as a seed s. In general, a 4-connected neighborhood is
used in this approach, and a neighboring patch n is inserted into a region, if:
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1. n is not assigned to any region,

2. the dot product of both patches normal vectors is less than a threshold TN , and

3. the orthogonal distance of n’s center to the region is less than Td(s) = l
√

(1− T 2
N),

where l is the distance between the corner points of s. If no further growth is possible,
a complete segment S is found. All included patches in S are removed from the list of
remaining patches, and the bins of the histogram are updated accordingly. Lastly, if S
exceeds the minimum plane size k2, it is considered a plane candidate.

By comparing the ratio of the second largest eigenvalue to the smallest eigenvalue of
the included points, the planarity of a region is evaluated. If this ratio exceeds a pre-
determined parameter θplane, the segment is considered a plane. Otherwise, additional
steps are needed.

First, the surface of a segment is checked for invariance, which is done by a principle
components analysis on the normal vectors. Therein, if their condition number exceeds a
threshold θcond, the segment is comprised of a set of cylinders or planes [45, Section III.D].

The center points and normal vectors of all patches in the segment are then projected
onto a plane. Then, plane and cylinder models are fit by performing RANSAC. If the
MSE of the plane model is lower than the MSE of the corresponding cylinder model, the
model is considered a plane, and a cylinder otherwise.

Lastly, the segments are undergone a refinement step. First, segments are eroded by
removing boundary patches through the use of a 3x3 kernel. Next, the eroded segments
are expanded by using a 3x3 8-neighbor kernel. The authors propose, that all patches
valid for refinement are given by the difference between the expanded segment and the
eroded segment. Lastly, each pixel p within the patches is added to the segment S if:

dist(p, S) ≤MSES · k, (2.4)

where k is a constant. The authors use k = 9 in their work.

2.5.7 Plane Extraction using Spherical Convex Hulls
As the name suggests, Plane Extraction using Spherical Convex Hulls (SCH-RG) employs
spherical convex hulls to detect planes in organized point clouds through region growing.
The primary concept behind this method is that the planes are not parameterized, but
rather represented as a set of geometric constraints in the spherical coordinate system.

First, a set of pre-processing steps is employed. The sensor noise is reduced through
bilateral filtering. Subsequently, a normal map of the OPC is generated. To prepare for
the region growing step, appropriate seeds are selected. Similar to PEAC and CAPE,
the 2D point cloud is subdivided into equal-sized patches, and the patch centroids are
choosen as seeds. A patch is considered planar if its MSE is smaller than a threshold.
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Having obtained a set of seed points, the region growing step is employed. A queue is
used for the retrieval of seeds and neighboring points. Each time a new seed is retrieved,
all normals of the corresponding patch are gathered and transformed into the spherical
domain. Starting from a seed s, neighboring points and their normals are sequentially
retrieved. If a neighbor n is already assigned to a region or the depth difference to s
exceeds a threshold T , it is discarded. If n is located inside of the spherical convex hull of
the region of s, it is added to the region, and its neighbors are inserted into the queue. If
n is not inside a convex hull, it is necessary to check whether n is outside of the so-called
cluster-permissible region (CPR):

CPR(p) = {q ∈ S|∠(p, q) ≤ 2θ}, (2.5)

where p is a normal on the sphere, and θ is an angular threshold. Note that the CPR of
multiple points, e.g., a region, is determined by the intersection of all individual points. If
n is outside the CPR of the current region, it is discarded. Otherwise, the convex hull is
updated with n, n is added into the set of points included in the region, and its neighbors
are inserted into the queue. It is worth noting, that seed points that are associated with
already detected planes are discarded upon retrieval.

Lastly, dilation is performed to eliminate holes in planes [39, Section III.B].

2.5.8 Depth Kernel-based Hough Transform
Depth Kernel-based Hough Transform (D-KHT) [58] is a Hough transform-based plane
detection algorithm that accepts depth images as input.

The algorithm is performed in three stages: Clustering, Voting, and Peak Detection.

Clustering In the clustering step, a quadtree is constructed to spatially subdivide the
image. A node recursively subdivides itself, until a minimum of included points sms is
reached, or until the set of points is considered approximately coplanar. The latter is
determined through a PCA. Pre-computing and subsequently referencing Summed-Area-
Tables (SATs) is done to increase the efficiency of this step, leading to a constant-time
calculation of the covariance matrix. If a non-planar node has less than sms points, these
points are then considered non-relevant and ignored during the voting step.

Voting The clustering step returns a set of approximately coplanar point clusters. The
best-fitting plane of each cluster is calculated. It is determined by the cluster’s mean
point, and a normal vector which is the eigenvector associated with the least eigenvalue
of the covariance matrix. An accumulator to store the votes and a set of gaussian kernels
corresponding to the coplanar clusters are necessary to perform the voting step. Given
the mean point µ(x,y,z) and the unit normal vector −→n = (nx, ny, nz)T of a cluster, the
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center of the gaussian kernel is calculated:

µ(ρ,φ,θ) =

µxµy
µz

 =

nxµx + nyµy + nzµz
cos−1(nz)
tan−1(ny

nx
)

 (2.6)

The covariance matrix of the gaussian kernel can then be calculated through first-order
error propagation:

Σ(ρ,φ,θ) = JΣ(x,y,z)J
T , (2.7)

where J is the Jacobi-Matrix of Equation 2.6. Similar to [7], an unbiased spherical
accumulator is used to store votes. The axes of the accumulator range are in the following
ranges:

θ ∈ [−π,+π], (2.8) φ ∈ [0, π], and (2.9) ρ ∈ [0, ρhigh]. (2.10)

Therein, ρhigh is the determined by the farthest distance between the camera and a
point of the input image. The discretization of θ and φ are pre-determined by the user and
should be based on the expected granularity of detected planes [58, Secion 3.3]. This likely
relates to the expected amount of noise as well. During the voting itself, the accumulator
bins are incremented if they are within two standard deviations of the kernel mean µ(ρ,φ,θ).

Peak Detection The voting step fills the bins of the accumulator with votes. A smooth-
ing of the bins is performed to avoid oversegmentation or the detection of multiple equiv-
alent planes. Vera et al. [58, Section 3.5] compute a convolution of the accumulator, as
well as a 6-connected filter with a central weight of 0.2002 and neighbor weights of 0.1333.
Each peak represents the parameterization of a detected plane. These planes are then
sorted by relevance, whereas the relevance of a plane is determined by a weighted sum of
the clusters that voted for the corresponding peak. The cluster weights correspond to the
number of pixels, rather than the number of samples.

All planes, parameterized by (ρ, φ, θ), are then transformed back into cartesian coor-
dinates. Moreover, they are parameterized by a center point, which is defined by ρ, and
a normal vector −→n :

−→n =

nxny
nz

 =

sinφ cos θ
sinφ sin θ

cosφ

 (2.11)

2.5.9 Depth Dependent Flood Fill
Depth Dependent Flood Fill (DDFF) [48] is a region growing-based algorithm that detects
planes in organized point clouds. The algorithm builds upon their previous method [49].
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The algorithm starts by selecting appropriate seeds. The organized point cloud gets
subdivided into cubes of a pre-determined size σseed. The points inside are then checked
for depth and curvature discontinuities. If neither case holds, the center of the cube is
marked as a seed for region growing.

The region growing is performed on point-level. Starting from a given seed s, a region
is expanded by checking neighbors within the same horizontal span. Given a horizontal
span of length n and its middle pixel p, the minimum plane size σ is calculated:

σ = ρ(p) = κρ · δ(p)2 + γρ, (2.12)

where δ(p) is the depth value of p, and κρ and γρ are tuneable parameters. A pixel n that
is σ pixel away from the left or right border of the span is observed next. n and all pixels
toward the border are added to the span of s if n and at least one of its vertical neighbors
pass the following membership test:

1. The perpendicular distance of n to the plane defined by s and its normal is smaller
than a threshold τflood,

2. the euclidian distance between p and a neighboring pixel is smaller than a threshold
τpoint, and

3. n is neither NaN, nor 0.

In a last refinement step, the set of planes is reduced by merging oversegmented planes.
First, a neighborhood graph of the rough segments is constructed. Any segments that
share a border are connected through a bidirectional edge. The graph is traversed in
a breadth-first manner, merging two connected nodes, a, b, if they satisfy the following
conditions:

1. the seed normals of a and b diverge less than a threshold τangle, and

2. the perpendicular distance between the segments is less than threshold τmerge.
If a, and all the planes a merged with fail this membership test with b, the edge (ab) is
removed from the graph. Note that the edge (ba) will be validated later, as b is subject
to change through merges with other neighbors. After a successful merge, a new centroid
and normal are obtained by adding both plane normals and centroids together, while the
respective amount of inliers acts as a weight.

The BFS iteration is repeated, until no merge occurs during an iteration. The authors
state that, typically, no more than five iterations are needed [48, Section III.E]. If this
fails, the unidirectional edge (ab) is removed from the graph.

The flooding under the constraint of minimum plane size leaves gaps. Therefore, as
a refinement step, a two-pass algorithm is used to fill them. In both passes, horizontal
strips of non-assigned pixels are detected. If both vertical neighbors of an unmarked pixel
share a label, the unmarked pixel is marked with this label.
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Figure 2.5: The PlaneNet Architecture. Taken from the respective paper [35, Figure 2].

2.5.10 PlaneNet
PlaneNet [35] is a deep learning-based approach to piece-wise planar reconstruction of a
scene from a single RBB-Image.

The method implements a Dilated Residual Networks (DRNs) [67] as a precursor for
a total of three output branches. These three branches predict

1. A set of plane parameters,

2. a set of corresponding segmentation masks, and

3. a non-planar depthmap,

as portrayed in Figure 2.5. The DRN is followed by a global pooling, or a pyramid pooling
step, depending on the prediction branch. To obtain a set of plane parameters, the global
pooling is followed by a fully connected layer, which produces K parameter triples. K
corresponds to the number of expected planes within a scene. Liu et al. [35] use K = 10
during their experiments. A convolution layer is placed after the pyramid pooling the
output of which is returned by the non-planar depthmap branch. An additional dense
conditional random field (DCRF) is applied to obtain the segmentation masks.

2.5.11 PlaneRecNet
PlaneRecNet [62] is a deep learning-based approach for piece-wise plane detection and
reconstruction that takes RGB images as input.

The entire architecture of PlaneRecNet is portrayed in Figure 2.6. The general ap-
proach of this method is to calculate plane parameters through PCA or RANSAC after
providing a precisely estimated depth. This is achieved by implementing two separate
branches, namely Plane segmentation, and Depth estimation. Both branches obtain their
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Figure 2.6: The PlaneRecNet Architecture. Taken from the respective paper [62, Figure 1]
.

input from a common precursor which is a ResNet [21] backbone. The Plane segmen-
tation branch is a lightweight configuration of SOLOV2 [60] that has been modified to
fit the context of plane detection. The Depth estimation branch is a lightweight Feature
Pyramid Network (FPN) [33]. Within the Depth estimation branch, a so-called Plane
Prior Attention (PPA) module is used to introduce the mask candidates from the Plane
segmentation branch into the depth estimation. The PPA module is based on the Depth
Attention Volume [25].

The estimated depth values and the segmentation masks, and classes, are then com-
bined into a piecewise planar scene reconstruction of the input image. No further refine-
ment is implemented.

2.5.12 PlaneRCNN
PlaneRCNN [34] is a deep neural architecture that detects planar regions and reconstructs
a piecewise planar depth map from RGB-Images. The architecture of PlaneRCNN, as seen
in Figure 2.7, consists of three primary modules:

1. The plane detection network,

2. a segmentation refinement network, and

3. a warping loss module.
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The first module is built upon the semantic segmentation network MaskRCNN [20].
The module is modified to differentiate between ”planar” and ”non-planar” object in-
stances. In contrast to PlaneNet (see Subsection 2.5.10), the number of planes to detect
is not pre-determined. Moreover, plane parameters and segmentation masks are calcu-
lated.

The second module, namely the segmentation refinement network, refines the extracted
segmentation masks obtained from the plane detection network. This is done by introduc-
ing non-locality into a U-Net [47] by combining a convolution layer with an accumulation
of feature volumes. The authors name this particular step the ConvAccu module [34,
Section 3.2].

Figure 2.7: The PlaneRCNN Architecture. Taken from the respective paper [34, Figure 2].

The warping loss module implements a refinement step. This module uses a second
angle of the same view to ensure consistency. A view from 20 frames ahead is projected
into the current view to further refine the segmentation process. It is worth noting, that
this is only performed during training to improve the accuracy.

2.6 Datasets
This section outlines a set of datasets popular in the evaluation of algorithms in the field
of plane detection. Table 3.3 summarizes the key characteristics of each dataset. The
individual datasets are outlined in the following subsections.

2.6.1 2D-3D-S
2D-3D-S [3] was recorded in three different buildings of the Stanford University and
divided into six distinct areas, including 272 different scenes. During the recording, a
360° Matterport5 camera was used. A detailed statistic of the included scene types can

5https://matterport.com/de/cameras/360-cameras
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be found in Table 4.1. The scenes include a complete unstructured point cloud and a list
of annotated files representings emantically different objects that can be found therein.
Within the dataset, the point cloud sizes, i.e., number of points, range from ∼8 · 104 to
∼9 · 106, with an average of ∼1 · 106.

2.6.2 Leica
The Leica6 dataset is a collection of 23 scans of outdoor environments. Each scan consists
of a dense unorganized point cloud which has been recorded by the Leica BLK360 LiDAR
Scanner7. The dataset is saved in ASTM E57 [24], which is a general-purpose file format
usually used for the storage of 3D data, e.g., point clouds, laser scans or images.

2.6.3 Kinect
The Kinect [42] dataset is a set of 30 organized point clouds. The recording was performed
with a Microsoft Kinect camera with a 640x480 resolution inside . A ground truth that
focuses on plane and cylinder segmentation is provided in addition to the point clouds.

2.6.4 SYNPEB
The SYNPEB dataset was introduced by Schaefer et al. [51] to improve upon the popular
SegComp dataset. The synthetic dataset includes a 6x7x3m room with various geometric
objects inside. Moreover, a total of 40 scans from different views within the room are
provided as organized point clouds with a resolution of 500x500. Lastly, the provided
ground truth represents a planar segmentation of the scene.

2.6.5 ARCO
The ARCO [22] dataset consists of 6 organized point clouds that have been recorded with
a Microsoft Kinect camera. All scenes show real indoor spaces, including a living room,
a kitchen, a saloon, a hallway, furniture, and an ordinary room. They are saved in the
popular .pcd8 file format. We are not aware of the existence of a ground truth.

2.6.6 SegComp
The SegComp [23] dataset includes a collection of over 400 depth images, as well as a
corresponding ground truth. Additionally, a complete evaluation package is provided on

6https://shop.leica-geosystems.com/de/leica-blk/blk360/dataset-downloads
7https://shop.leica-geosystems.com/de/leica-blk/blk360
8http://pointclouds.org/documentation/tutorials/pcd file format
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the corresponding website9. The images are saved in their own file format, namely .gt-seq.

2.6.7 NYU V2
The NYU-V2 [53] dataset is an improvement of the preceding version, namely NYU-V1 10.
The dataset consists of 1449 RGB-D images, 464 scenes from 3 US cities, and more than
400, 000 unlabeled frames. A ground truth in form of labeled objects is provided, as
well as a toolbox for arbitrary manipulation of data. Everything was recorded with the
Microsoft Kinect camera.

2.6.8 ICL-NUIM
The ICL-NUIM [18] dataset was introduced for the benchmarking of RGB-D, VO and
SLAM algorithms. Eight scenes are included, which are comprised of a surface ground
truth, depth images, and the trajectory of the camera. The dataset includes a total of
over 8000 images over these four scenes, whereas four have been recorded two indoor
environments, namely a living room, and an office.

2.6.9 SUNRGB-D
The SUNRGB-D [54] dataset is used for 3D object detection. The data is split into a
training set and a testing set. Over both sets, a total of over 13, 000 RGB-D images are
included, with corresponding ground truths in form of 3D bounding boxes. Furthermore,
a toolbox is provided. The dataset differentiates between 19 different objects, including,
but not limited to: ”wall”, ”door”, ”bookshelf”, and ”table”. More information can be
found on the related website11 under ”Other Materials”.

2.6.10 TUM
The TUM [56] dataset was created for the evaluation of VO and Visual-SLAM systems. A
Microsoft Kinect sensor with a resolution of 640x480 is used to record a total of 39 scenes
in indoor environments. While the dataset is primarily focused on trajectories, organized
point clouds are provided as well. A ground truth trajectory is provided for each scene.
The dataset can be found on the project website12.

9http://www.eng.usf.edu/cvprg/range/seg-comp/SegComp.html
10https://cs.nyu.edu/s̃ilberman/datasets/nyu depth v1.html
11https://rgbd.cs.princeton.edu/challenge.html
12https://vision.in.tum.de/data/datasets/rgbd-dataset/download
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2.7 Evaluation Metrics
In fields that revolve around the detection or the segmentation of particular objects,
metrics that describe the quality of detection or segmentation, respectively, are helpful.
Prevalently used metrics include the Precision, Recall, and the F1-Score. Precision gen-
erally describes how many of the results are relevant, i.e., the percentage of correctly
calculated values(see Eq. 2.13). Recall describes the ratio of relevant results to all rele-
vant data, i.e. the likelihood of a result being relevant(see Eq. 2.14). Lastly, the F1-Score
is the harmonic mean of the former two metrics (see Eq. 2.15).

In the context of this work, we calculate Precision, Recall and the F1-Score based on
voxel sets. Required are the original point cloud PC, the corresponding list of ground
truth planes GT and the planes obtained from a plane detection algorithm A. First, we
regularize PC to reduce complexity and to avoid proximity bias, because of the inverse
relationship between distance to sensor and cloud density. This regularization is obtained
through voxelization of the point cloud. With this voxel grid, we can now calculate
corresponding sets of voxels for each list of points that represent a plane. In the next
step, we compare our planes from GT with A to obtain a list of corresponding pairs of
ground truth and found planes. A ground truth plane gti is marked as detected if any
plane from the list of found planes achieves a minimum voxel overlap of 50%. With this
list of correspondences, we calculate Precision, Recall and the F1-Score.

For a given ground truth plane gtj and a corresponding detected plane ak we can
sort a given voxel vi into the categories True Positive(TP), False Positive(FP) and False
Negative(FN) as follows.

vi ∈ gtj ∧ vi ∈ ak ⇒ vi ∈ TP

vi ∈ gtj ∧ vi /∈ ak ⇒ vi ∈ FN

vi /∈ gtj ∧ vi ∈ ak ⇒ vi ∈ FP

With those rules, we can calculate the Precision, Recall, and F1-Score:

Precision = True Positive
True Positive + False Positive (2.13)

Recall = True Positive
True Positive + False Negative (2.14)

F1-Score = 2 · Precision ·Recall
Precision+Recall

(2.15)
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Chapter 3
Concept

Figure 3.1: A general view on an AR/VR system’s architecture. The specialized sensor
records data ([1]), which is passed to a SLAM algorithm ([2]). After map assembly, a
point cloud is handed to a plane detection algorithm ([3]). The detected planes are given
to a use-case-specific application ([4]).

Many AR/VR Systems integrate plane detection into their software123. Figure 3.1 shows
a generic block diagram of such a AR/VR system including plane detection. The environ-
ment is continuously recorded by a specialized sensor, which is usually a camera, a depth
sensor, or a combination thereof ([1]). A SLAM algorithm then integrates the new data
into its already existing map ([2]). The map, in form of a point cloud, is subsequently
passed to a plane detection algorithm ([3]). The algorithm performs the necessary steps
to detect all planes inside the current map and passes the planes to the application ([4]).
The application then further processes those planes as required by the underlying use
case.

1https://measurekit.com/
2https://www.locometric.com/roomscan
3https://www.housecraftapp.com/

https://measurekit.com/
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To remove any noticeable delay in the application, the plane detection step has to run
within a specific time limit. This temporal constraint is usually referred to as real-time.
Davison [12] observe that real-time is usually bound to the sensor’s frequency. Motivated
by this, we introduce a precise definition of real-time in Section 3.3.

When creating such an AR/VR system, the choice of plane detection algorithm is nat-
urally of great importance. The problem is that most published algorithms are inherently
incomparable. Often different datasets or metrics are used, which precludes a quantita-
tive comparison. Moreover, algorithms are often incomparable by internal functionality
due to differences in inputs and the format of the detected planes. Plane detection algo-
rithms are, in some cases, developed to run on specific hardware [65, 39]. We can safely
conclude that selecting a single ’best’ algorithm, solely based on the results presented in
their respective work, is impossible.

Motivated by Chapter 1, we aim to determine the real-time applicability in a realistic
environment. To achieve this, we perform a uniform comparison of suitable plane detection
algorithms. Therein, we especially pay attention to the accuracy and the calculation times.
This comparison will thereby yield the algorithm that produces the best results as well.
However, to perform this evaluation, we need the following:

1. Appropriate plane detection algorithms,

2. a realistic dataset, and

3. a definition of real-time.

The following sections are dedicated to these requirements.

3.1 Selection of Plane Detection Algorithms
Since most algorithms differ in certain aspects, it is not possible to perform a comparison
that includes every single one. Furthermore, not all algorithms are created from the same
motivation and focus on different things. Evaluating an algorithm in a scenario it has not
been designed for is likely to yield meaningless results. It is, therefore, necessary to first
define objective criteria upon which algorithms are judged to select suitable candidates
for the remainder of this work.

3.1.1 Criteria
In the following paragraphs, we outline appropriate criteria for the objective assessment
of plane detection algorithms.
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Type of Input The first criterion is the type of input expected by a plane detection
algorithm. Allowing vastly different inputs is likely to render the evaluation more compli-
cated, if not impossible, because an equivalent transformation between two input types
is not always possible.

We detail the different types of input in Section 2.1. To reiterate, the data represen-
tation of the recorded environment falls into one of four categories:

• unorganized or unstructured point cloud (UPC),

• organized or structured point cloud (OPC),

• Depth-Image (DI), and

• RGB-Image (RGBI),

whereas OPC and UPC both describe point clouds in the cartesian coordinate system.
The primary difference is that the 3D coordinates inside an organized point cloud are
saved in a 2D grid, while the unorganized point cloud resembles an unsorted 1D array.
Moreover, the Like OPC, depth images are a 2D grid of values. However, in contrast to
the 3D coordinates of an OPC, the data points of depth images are the distances to the
sensor.

Depth images, like OPCs are arranged in a two-dimensional grid, while the included
values are the distances to the sensor instead of 3D coordinates. The only difference
between RGB and depth images is that the RGB image values are colored pixels.

Detected Plane Format It is essential to determine an appropriate representation
of the detected planes. If no uniform output type can be determined, consequently, no
uniform metric for comparison can also be found.

In this work, we differentiate between the following:

• 3D-inliers (3D-IN),

• 2D-inliers (2D-IN), and

• the plane’s normal vector and distance to origin (n, d),

whereas the 3D-inliers of a plane are a set of 3D points in the format of an UPC. In
contrast, 2D-inliers are two-dimensional representations of a plane. This includes all
methods to describe a plane in a two-dimensional manner, e.g., sets of indices, pixels or
segmentation masks. These plane formats generally correspond to two-dimensional input
formats like organized point clouds or (depth-) images. Lastly, planes are often described
mathematically over their normal vector n and distance to the origin d.
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Hardware Requirements Another important aspect to consider is the hardware re-
quired by an algorithm. Most plane detection algorithms run on the CPU, some even
implement some form of CPU parallelism, e.g., 3D-KHT uses OpenMP4 to speed up
the octree construction [32, Section 4]. However, some methods are implemented either
completely or partially on the GPU. For instance, Hidalgo-Paniagua et al. [22] compare
different implementations of the RANSAC algorithm, whereas three versions are processed
entirely on the CPU, and the last one is offloaded to the GPU via CUDA5.

To summarize, we differentiate between algorithms that run solely on the CPU and
algorithms that, additionally, employ the machine’s GPU.

Availability Lastly, to evenly compare a set of algorithms, all need to be implemented
on the same machine to exclude the used hardware as a factor. Some authors provide
a corresponding implementation to the paper in which they propose their novel plane
detection technique. While other publications are limited to the paper, the level of detail
regarding the implementation varies.

For further reference, we consider a plane detection algorithm to be available if an
implementation is generally possible, i.e., the authors provide their implementation or
outline the algorithm in a way that enables self-implementation or a corresponding im-
plementation is available online.

3.1.2 Plane Detection Algorithms
A list of state-of-the-art algorithms is compiled through comprehensive research of the
current literature on plane detection (see Table 3.1). The table shows the input type and
the output format of all algorithms, as well as the required hardware, and the availability.
Note that we consider all algorithms to be available. However, we are not aware of public
implementations of OBRG and SCH-RG. However, the respective publications outline
their methods in high detail, thereby guiding a self-implementation.

The final outputs of PlaneNet, PlaneRecNet and PlaneRCNN are piecewise-planar
depth maps of the input image. Since modifying the architecture to return the segmen-
tation masks and plane parameters would require minimal effort, we adjusted the output
types in the table accordingly. Similarly, RSPD returns a set of planes parameterized
by its normal vector n, distance to origin d, and two additional extents. Modifying the
output to return inliers requires minimal effort as well.

4https://www.openmp.org/
5https://developer.nvidia.com/cuda-toolkit
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Table 3.1: A list of Plane Detection Algorithms compiled by reviewing the current liter-
ature. The algorithms are clustered by their type of input. The Section column provides
the placement within this work. We refer to Subsection 3.1.1 for details regarding the
specific namings of different plane formats. In the Hardware column, note that GPU
implies the usage of the CPU.

Plane Detection Algorithm Section Input Data Plane Format Hardware Available

RSPD [2] 2.5.1 UPC 3D-IN, (n, d) CPU Y
OPS [57] 2.5.2 UPC 3D-IN CPU Y

3DKHT [32] 2.5.3 UPC 3D-IN CPU Y
OBRG [59] 2.5.4 UPC 3D-IN CPU Y
PEAC [17] 2.5.5 OPC 2D-IN CPU Y
CAPE [45] 2.5.6 OPC (n, d) CPU Y

SCH-RG [39] 2.5.7 OPC 2D-IN GPU Y
D-KHT [58] 2.5.8 DI 2D-IN CPU Y
DDFF [48] 2.5.9 DI 2D-IN CPU Y

PlaneNet [35] 2.5.10 RGBI 2D-IN, (n, d) GPU Y
PlaneRecNet [62] 2.5.11 RGBI 2D-IN, (n) GPU Y
PlaneRCNN [34] 2.5.12 RGBI 2D-IN, (n, d) GPU Y

As mentioned above, we consider all presented algorithms available even if SCH-RG
and OBRG do not seem to have an official implementation. Therefore, while necessary,
the criterion of availability does not constrain the selection of algorithms in this case.

Integrating an external GPU into the system poses an additional cost factor. Moreover,
the additional weight could have negative effects on the user experience, as AR/VR devices
are usually handheld or head-worn. We exclude algorithms that require an external GPU,
namely SCH-RG, PlaneNet, PlaneRecNet, and PlaneRCNN.

Addressing the criterion of input type, we are only interested in performing plane
detection in complete environments. Each update published by RTAB-MAP is the union
of new data and the current state of the recorded map. RTAB-MAP publishes this update
in form of an unorganized point cloud (see Figure 2.1). To perform plane detection with
an algorithm that expects an OPC as input, the UPC has to be transformed into an
OPC. This transformation is not-trivial and involves the projection of 3D coordinates
onto a sphere based on a set of sensor parameters. An exemplary implementation thereof
is included in the lidar toolbox of MATLAB6. However, this transformation neglects the
global structure of the environment, as it returns a two-dimensional representation of the
environment. Therefore, we focus on unorganized point clouds in this work and exclude
PEAC, CAPE, SCH-RG, D-KHT, DDFF, PlaneNet, PlaneRecNet and PlaneRCNN from
our evaluation.

The detected planes need to be in the same format because, even for the same plane,
different representations could very well lead to different results. Assume a plane in

6https://de.mathworks.com/help/lidar/ug/unorgaized-to-organized-pointcloud-conversion.html
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cartesian form (n, d) and a plane represented by its (3D/2D) inliers. The calculated
metrics may differ significantly because the plane in cartesian form is infinitely dense.
Conversely, the plane described by its inliers allows for holes and non-rectangular shapes,
e.g., doorways or a round table, respectively. Being able to represent planes of arbitrary
shape is important for many applications. Moreover, only the 3D inliers (3D-IN) conform
to the determined input type of UPC (see Section 2.1.2). We thereby determine 3D-IN as
the preferred plane format and exclude all methods which do not comply, namely CAPE,
PlaneNet, PlaneRecNet, and PlaneRCNN. Note that, hereafter, we refer to 3D-IN solely
as inliers.

Finally, we end up with, and thus include, the following plane detection algorithms in
our evaluation:

• RSPD

• OPS

• 3D-KHT

• OBRG

Temporal Subdivision of Phases To enable a precise evaluation, we subdivide these
algorithms into a pre-processing phase, a plane detection phase, and a post-processing
phase, whereas we use the terms ”phase” and ”step” interchangeably in this work. In the
following, we outline the pre-processing and post-processing steps taken by the selected
algorithms. To avoid redundancy, we refer the reader to the Subsections 2.5.1-2.5.4 for
more details regarding the plane detection steps of each algorithm.

The pre-and post-processing steps are summarized in Table 3.2. RSPD, 3D-KHT, and
OBRG construct an octree (OC) during their pre-processing phase. Additionally, RSPD
and OBRG perform an initial estimation of normals (NE). OPS estimates the normal
vectors for a randomly chosen sample set of points of pre-determined size.

During post-processing, OPS merges smaller planes if they pass a coplanarity test and
then re-estimates the normals of the resulting plane. In the post-processing step, OBRG
refines the borders of detected planes by inserting previously unallocated regions. RSPD
and 3D-KHT do not perform post-processing.

Table 3.2: The Pre-processing and post-processing steps of the plane detection algorithms.
”/” denotes the absence of a pre-/post-processing step.

Phase RSPD OPS 3D-KHT OBRG

Pre-processing NE NE OC OC + NE
Post-processing / Merge / Refinement
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3.2 Selection of Datasets
After having obtained a set of suitable algorithms and, according to requirements intro-
duced at the beginning of this chapter (see Section 2), the selection of realistic dataset
is necessary. Just like a substantial amount of algorithms are incomparable for different
reasons, datasets differ in certain aspects as well. Therefore, this section deals with the
selection of an appropriate dataset.

3.2.1 Criteria
We introduce a set of criteria upon which currently popular datasets are compared. These
criteria are widely influenced by the criteria used for the previous selection of algorithms
(see Subsection 3.1.1).

Scene Format The Format of a scene in a given dataset corresponds directly to the
input of algorithms. To avoid redundancy, we refer the reader to Subsection 2.1.1 and
Paragraph 3.1.1 for more information. Thereby, the scene format can be divided into the
same four classes:

• unorganized or unstructured point cloud (UPC)

• organized or structured point cloud (OPC)

• Depth-Image (DI)

• RGB-Image (RGBI)

Realism We differentiate between synthetic and real/realistic datasets. Real datasets
represent real environments, as they are often recorded manually. In contrast, synthetic
datasets often include a collection of geometric bodies and are usually created digitally.
Two representatives for both types are shown in Figure 3.2.

Recorded Environment Since realistic datasets are created through manual record-
ing, it is useful to differentiate between indoor and outdoor environments. Note that
we consider this criterion only to apply for real datasets as synthetic datasets are not
recorded manually.
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(a) (b)

Figure 3.2: A synthetic dataset (a) and a real office scene (b). The former is from the
SegComp [23] dataset, and the latter is from the 2D-3D-S [3] dataset. Note that we
cropped the office point cloud for visualization purposes.

Ground Truth Lastly, not all datasets are created out of the same motivation. There-
fore, the method of evaluation differs widely over the range of available datasets. In
general, the ground truth (GT) of currently popular datasets can fall into one of the
following categories (compare Table 3.3):

• Planes,

• classes, or

• trajectory.

In some datasets, the ground truth represents a set of detectable planes. Therein, the
format of the planes depends on the plane format of the algorithm (see Paragraph 3.1.1).

Often, datasets from the field of semantic segmenation or object detection are used
for the evaluation of plane detection algorithms. Therein, objects in a scene are assigned
specific object classes, e.g., ”Wall”, ”Ceiling”, ”Table”, or ”Cup”. The ground truth
provides a labeling of these objects. This labeling can take the form of annotated 3D
bounding boxes or sets of pixels in the input image.

Lastly, some datasets provide a GT that focuses on the trajectory of the recording
sensor. This trajectory is usually taken from integrated sensors like Inertial Measurement
Units (IMUs).

Naturally, this classification can only apply to datasets that include a ground truth.

3.2.2 Datasets
Table 3.3 summarizes currently prevalent datasets in the scientific literature regarding
plane detection. Most of the datasets therein are used in the corresponding papers of the
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plane detection algorithms presented in Table 3.1. However, this does not influence the
selection process. Note that SYNPEB and SegComp are synthetic datasets and, therefore,
are neither indoor nor outdoor. Furthermore, we are not aware of a ground truth for the
ARCO dataset.

Table 3.3: Plane detection Datasets. The GT column specifies what the ground truth of
each dataset represents. The datasets are clustered by their type of format. The second
column provides the placement within this work. Note that we include our FIN dataset
in this table for completeness reasons.

Dataset Section Scene Format Real Indoor GT

2D-3D-S [3] 2.6.1 UPC Y Y classes
Leica7 2.6.2 UPC Y N planes

Kinect [42] 2.6.3 OPC Y Y planes
SYNPEB [51] 2.6.4 OPC N / planes

ARCO [22] 2.6.5 OPC Y Y /
SegComp [23] 2.6.6 DI N / planes
NYU V2 [53] 2.6.7 DI Y Y classes

ICL-NUIM [18] 2.6.8 DI Y Y trajectory
SUNRGB-D [54] 2.6.9 DI Y Y classes

TUM [56] 2.6.10 DI Y Y trajectory
FIN (ours) 4.4 UPC Y Y planes

In Subsection 3.1.2, we determine unorganized point clouds as the type of input.
Furthermore, since we give special focus to the real-world applicability of plane detection
algorithms, we must evaluate them on realistic datasets, thereby excluding all datasets
except 2D-3D-S and Leica. Additionally, we are especially interested in realistic indoor
environments, as motivated by Chapter 1. Therefore, Leica ceases to be an option and
we subsequently choose 2D-3D-S as the dataset for the evaluation.

Nevertheless, we cannot use the ground truth included in 2D-3D-S because it repre-
sents the segmented scene at the level of objects [3, Section 4.1] instead of focusing on
planes within the scene. As a consequence thereof, we create a suitable ground truth of the
2D-3D-S dataset through manual segmentation. We provide details of this time-expensive
process in Section 4.3.

Since the unorganized point clouds do not grow incrementally over time, 2D-3D-S does
not inherit any temporal component. Moreover, Armeni et al. [3] recorded the dataset

7https://shop.leica-geosystems.com/de/leica-blk/blk360/dataset-downloads
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with a static 360° camera. Therefore, the dataset is not entirely realistic, though being
recorded in a real environment.

To our knowledge, no dataset meets the above criteria, is genuinely realistic, and
includes a plane-focused ground truth. Therefore, we record an incrementally growing
dataset in the Faculty of Computer Science at Otto-von-Guericke University Magdeburg,
namely the FIN dataset.

To perform a comparison between the FIN and 2D-3D-S, we record a scene for each
of the following scene types (see Figure 3.3):

• auditorium

• hallway

• conference room

• office
We focus on these four scene types because they are the most common in a realistic

indoor environment. Lastly, since this is a novel dataset, we need to create a ground
truth. The details thereof are explained in Section 4.4.

(a) (b)

(c) (d)

Figure 3.3: The recorded point clouds for each scene type: (a) auditorium, (b) conference
room, (c) office and (d) hallway. The ceilings have been manually removed for visual-
ization purposes but remain in the dataset for the experiments. Full-size figures can be
found in Appendix B
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3.3 Definition Real-Time
Finally, as mentioned in the beginning of this Chapter, we must define the meaning of
real-time to determine the real-time applicability of a plane detection algorithm.

In Subsection 3.1.2, we introduce the differentiation between pre-processing and post-
processing steps. It is possible that one phase of an algorithm accounts for the majority of
the total calculation time and that the algorithm would be considered real-time applicable,
if that phase were to be excluded. Because some steps can be covered by previous steps
in the AR/VR system (see Figure 3.1), i.e., by the sensor or the SLAM algorithm, we
give two definitions of real-time.

In general, and without taking the algorithms internal structure into consideration,
we have to consider possible hardware limitations, data flow, and how often it is needed
to perform calculations, e.g., how quickly the SLAM algorithm updates its internal map
(Figure 3.1, [2]) or how frequently new planes are needed (Figure 3.1, [4]). The recorded
raw data is not directly sent to the plane detection algorithm but instead given to RTAB-
MAP, which then performs calculations to update and publish the map. Therefore, the
upper limit is the frequency of how often RTAB-MAP publishes those updates, which by
default is once per second.

Total Real-Time RTtot According to this upper limit of RTAB-MAP, we consider an
algorithm to have Total Real-Time applicability, if it achieves an average frame rate of
minimum 1, i.e., the total processing time of an algorithm lies under one second. In the
remainder of this work, we use Total Real-Time and RTtot interchangeably.

Real-Time Plane Calculation RTcalc Being a subset of total Real-Time applicability,
Real-Time Plane Calculation determines the real-time applicability if the processing time
of an algorithm excluding pre-processing lies under the aforementioned upper bound of
1s. Like RTtot, we use Real-Time Plane Calculation and RTcalc interchangeably.

3.4 Summary
Many Augmented Reality applications have constraints in the form of a temporal com-
ponent. Augmented or Virtual Reality applications that include plane detection are no
exception. Thereby, these constraints apply to the plane detection algorithms as well. In
addition to time constraints, good quality is often tightly coupled to expensive or closed
technology. In this work, we aim to evaluate the quality of real-time plane detection al-
gorithms under the use of more affordable hardware, namely two Intel RealSense sensors.
Therein, we are especially interested in the aspect of real-time applicability in a realistic
environment.
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3.4. Summary

At the beginning of this chapter, we state that three aspects are required for this
evaluation: A set of plane detection algorithms, useful datasets, and a definition of real-
time. The selection of the best plane detection algorithm, however, is non-trivial. After
defining meaningful criteria for objective judgement, we select appropriate plane detection
algorithms. Moreover, we select realistic datasets, one of which is a novel creation, and
present two definitions of real-time, namely RTtot and RTcalc.
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Chapter 4
Implementation

This chapter provides the implementation details of the outlined concept of the previous
chapter. The following sections deal with the general system setup, the implementation
of the algorithms selected in Section 3.1, and the creation and segmentation process of
the chosen datasets (see Section 3.2).

4.1 System Setup
It is necessary to perform all experiments on the same machine to ensure a consistent
comparison. We implement all algorithms and further architecture on a Lenovo IdeaPad
5 Pro, which runs Linux Ubuntu 20.04.5. The laptop has an AMD Ryzen 7 5800H CPU
and 16 GB of RAM.

We install the most recent ROS distribution, Noetic Ninjemys1, as well as realsense-
ros2 with all additional dependencies. Note that the version of realsense-ros changed over
the course of this work.

4.2 Plane Detection Algorithms
In Chapter 2, we provide detailed information about the algorithms we select in Sec-
tion 3.1. The following subsections deal with the implementation details thereof. Note
that the subsections of RSPD and OPS are joined due to their similarities of implemen-
tation.

1http://wiki.ros.org/noetic
2https://github.com/IntelRealSense/realsense-ros/tree/ros1-legacy
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4.2. Plane Detection Algorithms

4.2.1 RSPD & OPS
We implement RSPD3 and OPS4 using their respective open source implementations on
GitHub. Note that, while the implementation of RSPD is provided by one of the authors,
we could not determine whether the user who uploaded his implementation of OPS is
affiliated with Sun and Mordohai [57]. Both methods are implemented in C++ and
depend on the C++ linear algebra library Eigen5, and the C++ API of the Point-Cloud
Library [50], libpcl-dev.

4.2.2 3D-KHT
The authors of 3D-KHT, provide an implementation, in form of a Visual Studio project,
on their website6. Since the laptop we use does not run Windows, we use cmake-converter7

to convert the solution to a CMake project we can build using make. The dependencies
of this implementation include the C++ library Dlib [30], as well as the OpenGL Utility
Toolkit GLUT 8. Lastly, the multi-processing API OpenMP9 is required as well.

4.2.3 OBRG
To our knowledge, no open-source implementation is available for the algorithm. We,
therefore, use our own implementation, which can be found on our Github repository10.

We implement the algorithm using Python. We choose to write our own octree imple-
mentation for spatial subdivision of our point cloud, since the implementation of public
libraries like open3d [68] are limited in terms of leaf node functionality. The subdivision is
followed by calculating the saliency features using open3d’s normal estimation function.
We follow the pseudocode as stated in [59, Algorithm 1]. We modify the insertion into
the set of regions by adding a containment check, to avoid redundancy of regions. By
reducing the number of regions (incl. redundancies), we also reduce the total calculation
time.

3https://github.com/abnerrjo/PlaneDetection
4https://github.com/victor-amblard/OrientedPointSampling
5https://eigen.tuxfamily.org/index.php
6https://www.inf.ufrgs.br/ oliveira/pubs files/HT3D/HT3D page.html
7https://cmakeconverter.readthedocs.io/
8https://www.opengl.org/resources/libraries/glut/glut downloads.php
9https://www.openmp.org/

10https://github.com/lupeterm/OBRG
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4.3. 2D-3D-S

4.3 2D-3D-S
The 2D-3D-S dataset provides a ground truth in form of annotated point clouds corre-
sponding to 13 object classes [3, Table 1]. Since these annotated objects are not always
planar, we cannot use them for the evaluation of plane detection algorithms. Thus, we
create a ground truth that focuses on planar structures.

We use the open-source 3D point cloud and mesh processing software CloudCompare11

to visualize a scene and manually segment included planes. Because we cannot assume
all walls to be planar or that, e.g., the tops or three adjacent tables always form the same
number of planes (see Figure 4.1b), we have to view each point cloud and segment the
included planes manually. An exemplary before-and after-segmentation is shown below
in Figure 4.1a.

(a) (b)

Figure 4.1: (a) Ground truth Segmentation of a hallway in CloudCompare. Shown is the
input cloud on the left and segmented planes on the right. Both are cropped and without
ceilings for visualization purposes. (b) The provided ground truth considers these tables
to be three separate objects. Within the context of plane detection, the three table tops
would form exactly one plane.

The manual segmentation process is very time consuming, not only because of the
large amount of data but also due to the level of subjectivity involved. On average, the
segmentation of a scene took 8-10 minutes, which, for all 272 scenes, would result in a
total of 36-45 hours. To reduce the time spent in segmentation, we perform an initial
analysis of the scenes in a given area and omit scenes that show no noticeable difference
compared to others. This analysis reduces the number of segmented scenes to slightly
more than half of the total, thereby reducing the time to 18-23 hours.

11https://www.danielgm.net/cc/
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4.4. FIN Dataset

The results of the manual segmentation process are documented in Table 4.1, which is
inspired by [3, Table 7]. Like the original, it shows the amounts of scenes per scene type
in each area. We extended the table with a column dedicated to the planes included in
each scene type. According to the table, a total amount of 3410 planes are included in
the dataset.

Table 4.1: 2D-3D-S dataset statistics. Shown are the number of scenes per category and
for how many we created a ground truth (#GT/#Total). Note that the rightmost column
reports the number of segmented planes per scene category and does not correspond to
other columns in this table.

Scene Categories Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 TOTAL Planes
Auditorium - 2/2 - - - - 2/2 70

Conference Room 2/2 1/1 1 /1 3/3 3/3 1/1 11/11 375
Copy Room 1/1 - - - - 1/1 2/2 45

Hallway 8/8 12/12 6/6 14/14 1/15 6/6 48/61 977
Lobby - - - 2 /2 1/1 - 3/3 207
Lounge - - 2/2 - - 1/1 3/3 101
Office 16/31 5/14 10/10 9/22 4/42 3/37 48/156 1116

Open Space - - - - - 1 /1 1/1 10
Pantry 1/1 - - - /1 1/1 3/3 73
Storage - 9/9 2 /2 4/4 4/4 - 19/19 222

WC 1/1 2/2 2/2 4/4 4/2 - 11/11 214
139/272 3410

4.4 FIN Dataset
Reiterating Section 3.2, we select four scene types of the 2D-3D-S dataset for the recording
of the self-created FIN dataset. Namely, these scene types are auditorium, conference
room, hallway, and office. All scenes are recorded inside the Faculty of Computer Science
at Otto-von-Guericke-University in Magdeburg. Running realsense-ros and holding our
cameras, we walk through the corresponding parts of the building while scanning the
environment to the best of our ability. We save each incremental map update to a file for
further usage. The statistics of all recordings are summarized in Table 4.2.

Given the differences in spatial dimension, the recordings of each scene also differ in
duration and size. The auditorium scene has a total of 296 individual time frames, the
conference room scene has 113, the hallway has a total of 174, and the office has 125 time
frames. The FIN dataset, thereby, has a total of 708 time frames (see Table 4.2).
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4.4. FIN Dataset

Table 4.2: Statistics of the FIN dataset. The duration reports the time spent on a
recording, the maximum size denotes the number of points in the most recent point
cloud. The rightmost column shows the number of manually segmented planes for each
scene. The bottom row shows the total values over the entire dataset.

Scene Duration Max. Size Planes

Auditorium 296 656.599 41
Conference Room 113 387.183 11

Hallway 174 303.780 5
Office 125 364.165 15

708 1.711.727 72

Since no ground truth exists for a novel dataset like this, we create a set of ground truth
planes gtend for only the most recent update of each scene, e.g., for the entire recording.
By creating a ground truth for only the last frame of each scene, we substantially reduce
the time invested in this task. To prepare for the evaluation of a point cloud mt at a
given time t, we crop all planes in gtend by removing all points that are not present in
mt. Figure 4.2 shows the final point cloud and the manually created ground truth gtend of
the hallway scene on the far right. On the left thereof, two point clouds of earlier stages
of the recording are shown, as well as their dynamically created ground truth. We speed
up this expensive process by employing a KD-Tree neighbor search with a small search
radius since we only need to know whether a certain point is present or not. The number
of resulting planes are reported in the right-most column of Table 4.2.

Figure 4.2: Dynamic ground truth generation shown by the example of three point clouds
from the hallway scene, as well as the corresponding ground truth. The rightmost pair
shows the final state of the point cloud and its ground truth.
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Chapter 5
Evaluation

In this chapter, the plane detection algorithms selected in Section 3.1 are uniformly com-
pared. We enter this chapter by outlining the protocol followed during this evaluation.
Afterwards, we present and analyse the results thereof.

5.1 Protocol
This work aims to determine which plane detection algorithm is the most suitable for an
AR/VR systems in a realistic environment. For this decision, we compare the algorithms
selected in Chapter 3. In Section 3.2, we established that the 2D-3D-S dataset is not
entirely suitable for evaluating real-world applicability due to its static nature, i.e., non-
incremental growth and having been recorded by a stationary 360° camera. To mitigate
this, we created the realistic FIN dataset. Since both datasets are fundamentally different,
we will perform the experiments and the analysis separately and then compare the results.
All experiments are performed on an AMD Ryzen 7 5800H CPU with 16GB of RAM.
First, we present the metrics used for comparison, followed by an outline of the used
configurations of parameters for each experiment.

5.1.1 Metrics
The following two paragraphs detail the metrics we use in this evaluation. We introduce
our methodology of measuring accuracy, as well as the calculation times. Note that by
using the term ”time frame t” or ”time step t”, we refer to the state of the point cloud at
a given time t.



5.1. Protocol

Accuracy To quantify the accuracy of the plane detection algorithms, we use the de-
tected planes and the created ground truth to calculate the three following metrics: Preci-
sion, Recall, and the F1-Score. We calculate the Precision, as this reports the percentage
of correctly detected points within the planes an algorithm returned. Similarly, we cal-
culate the Recall because it gives information about the percentage of correctly detected
points in comparison to the number of points that could be detected. Using these metrics
separately is problematic as we cannot expect the distribution of ”plane” to ”non-plane”
to be even. The F1-Score is the harmonic mean of the Precision and the Recall and
therefore measures the balance between the Precision and Recall. Intuitively, this means
that an algorithm has to yield sufficient Precision and Recall results to score a sufficient
F1-Score. The F1-Score, thereby, is the primary metric for the quantitative comparison
of algorithms in this work. However, we report the Precision and the Recall for thorough
analysis. The procedure of calculation is taken from [2, Section 4] and detailed in Sec-
tion 2.7. Note that we use the detected planes for the calculation, however, we are not
using them directly as a measure of performance due to the subjective nature of manual
ground truth segmentation.

Time Measurements We are also interested in the real-time applicability of an algo-
rithm. We introduce two definitions of real-time in Section 3.3. To reiterate, we consider
an algorithm to be totally real-time (RTtot) applicable if its total runtime is below 1s.
Furthermore, we consider an algorithm to achieve Real-Time Plane Detection (RTcalc)
applicability if its plane detection and post-processing steps run faster than 1s.

When recording a real environment, the point clouds likely grow incrementally with
each map update. Therefore, the average calculation time alone is of limited significance,
as we assume the calculation times to grow with the cloud size. Based on this assumption,
it is necessary to analyze the relationship between the point cloud size and the calculation
time in addition to average values. Note that we refer to a point cloud’s size by its number
of contained points in the remainder of this chapter.

Following the separation of algorithms into phases (see Paragraph 3.1.2), we divide the
calculation time into the pre-processing time tpre, the time spent during plane detection
tcalc, and the duration of post-processing steps tpost. This separation enables an in-depth
analysis of both average results and the results over time. Since we have two definitions
of real-time, we introduce two metrics of calculation time:

1. The sum of tcalc and tpost allows us to determine whether an algorithm is Real-Time
Plane Detection applicable, and

2. to determine whether an algorithm is totally real-time applicable, we consider the
total computation time ttot, which is the sum of the individual times (see Eq. 5.1)

ttot = tpre + tcalc + tpost (5.1)
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5.1. Protocol

5.1.2 Parameterization of Algorithms
Because the datasets inherit different amounts of noise, it is necessary to modify the
algorithms accordingly. We thereby modify the algorithms’ parameterization to achieve
more noise robustness. In the following, the parameterizations of the algorithms with
respect to the two experiments are outlined. Therein, we refer to the parameterization
of the 2D-3D-S experiment as the default configuration. Furthermore, we determine an
appropriate parameterization for the FIN dataset through empirical experiments. These
experiments include multiple tests of different combinations of values on all scenes of
the FIN dataset, the ranges of which are specified in the respective paragraph of each
algorithm.

5.1.2.1 RSPD

Table 5.1: Parameter configuration of RSPD used for the experiments.

Experiment lO ε MOR k MND MDP
2D-3D-S 10 30 25% 30 60° 0.258

FIN 10 30 25% 30 60° 0.258

2D-3D-S We use the parameters of the provided implementation1 for the 2D-3D-S
experiment. These parameters include the maximum octree level lO, the minimum number
of samples per leaf node ε, the Maximum Outlier Ratio MOR per plane, the size of the
nearest neighborhood k, the Maximum Normal Deviation MND, and the Maximum
Distance to Plane MDP . Note that while k = 50 is used in the respective paper [2,
Section 3.3], k = 30 is used in the official implementation. We adopted the latter because,
in our experience, it produces sufficient results while reducing the pre-processing time.

FIN Multiple experiments with different values had been conducted. The individual
ranges are lO ∈ [8, 12], ε ∈ [15, 150],MOR ∈ [15, 40], k ∈ [30, 90],MND ∈ [50ř, 70ř], and
MDP ∈ [0.15, 0.4]. Through these experiments, we were not able to find a configuration
that yields considerably better results than the default parameterization. Therefore, no
parameter modifications for the FIN dataset are made.

1https://github.com/abnerrjo/PlaneDetection
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5.1.2.2 OPS

Table 5.2: Parameter configuration of OPS used for the experiments.

Experiment αs KNN θh θN p
2D-3D-S 3% 30 0.05 100 0.99

FIN 3% 90 0.35 100 0.99

2D-3D-S The parameter configuration used for the 2D-3D-S experiment is shown in
the first row of Table 5.2. Like the parameterization of RSPD, we took this configuration
from the provided implementation2. We use a sampling rate αs of 3% and a neighborhood
size KNN of 30 for the estimation of normal vectors. Additionally, we use a distance
threshold θh of 0.05(m). Furthermore, we set the inlier threshold θN to 100 and the
probability for adaptively determining RANSAC iterations p to 0.99, as proposed in [57,
Section 4A].

FIN We ran experiments on the FIN dataset with different parameter values in the
respective ranges: α ∈ [0.3%, 6%], KNN ∈ [30, 150], θh ∈ [0.05, 0.5], θN ∈ [50, 1000], and
p ∈ [0.90, 1.0]. We choose the configuration, that shows a balance between speed and
accuracy, namely the following. We increase KNN to 90, as larger neighborhood sizes
increase the accuracy of normal estimation and, consequently, the overall accuracy of a
method. Furthermore, we increase the tolerated plane thickness θh because an increase in
sensor noise ultimately thickens the recorded planes. Both modifications are highlighted
in bold in the second row of Table 5.2.

5.1.2.3 3D-KHT

Table 5.3: Parameter configuration of 3D-KHT used for the experiments.

Experiment φnum ρnum slevel sps sα sβ
2D-3D-S 30 200 2 0.002 18 6

FIN 30 100 2 0.002 8 6

2D-3D-S The parameter configuration is shown in Table 5.3. We use an accumulator
discretization of 30 and 200 for φ and ρ, respectively. Starting to check for planarity at an
octree level slevel of 2 seems to yield the best results. Limberger and Oliveira [32] propose
a minimum of 30 samples per cluster sps, however, we use 0.2% of the total point cloud

2https://github.com/victor-amblard/OrientedPointSampling
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due to the wide ranges of point cloud sizes in the dataset (see Subsection 2.6.1). Lastly,
we set the plane isotropy tolerance sβ to 6, as proposed in [32, Section 3.1]. In contrast,
using a plane thickness tolerance sα value of 18 seemed to yield better results than the
proposed 25. This was determined by a small set of experiments with sα values ranging
between 15 and 33.

FIN For the FIN experiment, we modify the values of ρnum, and sα to accommodate
for the higher levels of noise. These values are obtained by performing tests with different
parameterizations. Precisely, we used the following parameter ranges combinations of
values therein: φnum ∈ [20, 100], ρnum ∈ [50, 600], slevel ∈ [1, 5], θN ∈ [50, 1000], sα ∈
[5, 23], and sβ ∈ [4, 8]. Reducing ρnum should decrease the accuracy, however, it seems
to yield better results in a high-noise environment like the FIN dataset. We decrease
sα to allow for slightly thicker, e.g. noisier, planes to be detected. The modification of
parameters is highlighted in bold in Table 5.3.

5.1.2.4 OBRG

Table 5.4: Parameter configuration of OBRG used for the experiments.

Experiment lmax θres θd θang θM θp
2D-3D-S 5 0.08 0.08 0.18 5000 90%

FIN 5 0.22 0.2 0.2 5000 70%

2D-3D-S The used configurations for the experiments are shown in Table 5.4. The
parameterization was determined during the implementation process and showed a rea-
sonable compromise between efficiency and accuracy. We considered the reported param-
eterizations in [59, Tables 1, 4, 7]. However, since the authors used three large outdoor
scenes for their evaluation, they would likely not be optimal for smaller, indoor scenes.
We confirmed this assumption based on a small set of empiric experiments with scenes
from the 2D-3D-S dataset, wherein we compared the results for the reported parameteri-
zation and the one we determined. Due to the low level of noise, we assign a very small
tolerance to the residual threshold θres and the distance threshold θd. Additionally, we
assign a high planarity threshold value of θp = 90%.

FIN We performed tests with different parameterizations, individually ranging as fol-
lows. lmax ∈ [4%, 7%], θres ∈ [0.05, 0.3], θd ∈ [0.05, 0.3], θang ∈ [0.13, 0.3], θM ∈ [200, 6000],
and θp ∈ [70, 90]. Due to higher levels of noise, and thus, thicker walls, we increase θres,
θd, and the angular divergence threshold θang. According to [59, Section 3.4], the planarity
threshold θp should be chosen between 70% and 90% depending on the noise level. As
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the expected noise level of the FIN dataset is much higher than the noise of the 2D-3D-S
dataset, we reduce this threshold to 70%. The used parameters for the FIN experiment
are summarized in the second row of Table 5.4.

5.2 Results
This section deals with the results of the experiments. The individual results of both
experiments are presented and analyzed. Lastly, the results are compared.

5.2.1 2D-3D-S
We ran RSPD, OPS, 3D-KHT, and OBRG on 139 scenes of the 2D-3D-S dataset. Sub-
sequently, for each scene, the Precision, Recall, and the F1-Score of each algorithm were
calculated. The computation times were measured and divided into pre-processing tpre,
plane detection tcalc, and post-processing tpost. Table 5.5 shows the average of the com-
puted results for each algorithm. The rightmost column gives the total computation time
ttot. The largest values of the accuracy and the smallest average values of the times are
indicated in bold. It is to be noted that no lowest value of tpost is indicated since RSPD
and 3D-KHT have no post-processing steps and, therefore, ”per default” spend less time
in this step.

Table 5.5: Average results of each algorithm over the 2D-3D-S dataset. The right half of
the inner columns shows the average time spent in pre-processing (tpre), the average time
spent in the plane detection (tcalc), and the average time spent in post-processing steps
(tpost). The rightmost column shows the average total calculation time ttot. Note that the
absence of post-processing steps is denoted as ”/”. All times are measured in seconds.

Algorithm Precision Recall F1-Score tpre tcalc tpost ttot
RSPD 84.80% 89.79% 86.84% 62.65 1.04 / 63.69
OPS 88.98% 70.45% 77.68% 13.12 10.97 1.01 25.10

3DKHT 71.40% 78.32% 75.19% 0.71 1.03 / 1.74
OBRG 81.38% 66.77% 71.00% 28.07 34.29 2.61 62.97

Accuracy RSPD has the overall highest accuracy with a Precision of ∼85%, a Recall of
∼90%, and an F1-Score of ∼87%. OPS supersedes RSPD with a Precision value of ∼89%
but scores significantly lower Recall and F1-Score values. 3D-KHT yields Precision, Recall
and F1-Score results in the range of ∼71% and ∼79%. OBRG has a high Precision value
of ∼81%, however its Recall and F1-Score values are the lowest out of all algorithms with
∼67% and ∼71%, respectively.
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Average Time With an average of 0.71s spent in pre-processing, and an average of
1.03s spent in plane detection, 3D-KHT only needs an average total of 1.74s to process
an entire point cloud and thereby achieves the lowest calculation times. RSPD is the
only algorithm that scores similar tcalc values, with an average of 1.04s. However, RSPD’s
time spent in pre-processing is the highest among the algorithms. With an average ttot of
∼25s and ∼63s, OPS and OBRG, respectively, run dramatically slower than the other two
algorithms. According to these values, no algorithm achieves Total Real-time applicability.
RSPD and 3D-KHT are very close to falling under the threshold of 1s for Real-Time Plane
Detection applicability, exceeding it by only 0.4s and 0.3s, respectively

Relationship of Time and Size For each scene of the 2D-3D-S dataset, the pairs of
processing times and point cloud file sizes are presented in Figure 5.1.

The computation times of 3D-KHT do not seem to strongly relate to the size of
the point cloud. Both the duration of the pre-processing and the duration of the plane
detection initially grow linearly but do not show a large growth even with large jumps
in point cloud size. The difference in calculation times between ∼7 · 106 and ∼9 · 106 is
hardly noticeable considering .

The computation times of RPSD show a similar relation, with the difference that the
pre-processing of RSPD takes significantly longer. As with 3D-KHT, the duration of plane
detection seems to have an upper limit.

In general, the pre-processing time of OPS has a linear growth depending on the size
of the point cloud. The duration of plane detection also shows a linear relationship, with
the difference that there is a certain level of fluctuation. The post-processing times are
negligible for the most part, given the small number of values above 0. The irregularity
of the spikes gives reason to assume that it primarily depends on the structure of the
recorded environment rather than size alone.

The duration of the pre-processing of OBRG also shows a linear relationship with
respect to the point cloud size. The average high tpre values from Table 5.5 are also
reflected here since most values are in the range of 10s − 100s, even for smaller cloud
sizes at ∼1 · 106. The tcalc values of OBRG do not appear to be dependent on the size
of the point cloud, as the computation times tend to decrease with growing point clouds.
A possible reason could be the fixed value of the octree levels lmax. As this parameter
is vital for the calculations in all phases, all calculation times of OBRG are likely to
show improvement upon applying a parameter optimization of lmax based on the dataset.
From our experience, the mid-sized scenes in the 2D-3D-S dataset are often long and
narrow hallways. Assuming an inappropriate octree depth parameter, the subdivision
could effectively split the hallway, returning a set of chunks that are in no way to be
considered planar. This would consequently lead to an early termination due to failed
thresholds, thus reducing the calculation times (and most likely yielding low accuracy).
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Figure 5.1: The time spent in pre-processing tpre, plane detection tcalc, post-processing
tpost, and the total calculation time ttot per point cloud size of the 2D-3D-S dataset. Note
that the y-axis is scaled logarithmically to the base of ten.
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Summary 2D-3D-S Experiment With an average of ∼89%, OPS has the highest
value in Precision, while RSPD achieves the highest Recall and F1-Score with ∼90% and
∼87%, respectively. 3D-KHT has the lowest total computation time ttot with an average
of 1.74s. With >60s, RSPD and OBRG have the largest ttot values among the algorithms,
with tpre accounting for the majority for RSPD.

Figure 5.1 shows that the runtimes of 3D-KHT are the smallest. RSPD also has low
tcalc values but consistently spends the longest time in pre-processing. Moreover, the
pre-processing times of all algorithms seem to be generally dependent on the size of the
point cloud. The plane detection runtimes of OPS and OBRG fluctuate. However, OPS
fluctuates less than OBRG. The post-processing runtimes of OPS are negligible overall.
The tpost values of OBRG are stable at 2.61s on average, except for medium cloud sizes,
see Table 5.5.

Adhering strictly to our definitions of real-time, no algorithm achieves real-time ap-
plicability in this experiment. However, we might consider RSPD and 3D-KHT to be
Real-Time Plane Detection applicable since the point cloud sizes vary greatly, and the
average duration of their plane detection phase is only 0.03s− 0.04s greater than the 1s
threshold. Furthermore, as Figure 5.1 suggests, RSPD and 3D-KHT are Real-Time Plane
Detection applicable for point clouds with .1 · 106 points.

5.2.2 FIN
Each of the total 708 time frames of the FIN data set was processed by each algorithm.
Subsequently, we evaluated each time frame separately, i.e., by calculating the Precision,
the Recall, and the F1-Score . Additionally, we measured the computation times of each
time frame for all algorithms, again divided into pre-processing tpre, plane detection tcalc,
and post-processing tpost.

The average results over all time steps of all scenes of the FIN experiment are presented
in Table 5.6. The highest values are written in bold for Precision, Recall, and the F1-
Score, as are the lowest times of each calculation step and the total time.

Accuracy OPS has the highest average Precision of the algorithms, with almost 70%.
RSPD achieves the highest values for Recall and the F1-Score with ∼61% and ∼59%,
respectively. 3D-KHT and OBRG achieve a similar Precision, but for Recall and F1-
Score, however, 3D-KHT has higher values than OBRG by approx. 13% and approx.
17%, respectively. RSPD thus achieves the highest overall accuracy, while OBRG achieves
the overall lowest.

Average Time With almost 15s, RSPD spends the most time in pre-processing among
the algorithms. In contrast, RSPD has the shortest time spent during plane detection,
with an average of 0.19s. Overall, 3D-KHT needs the shortest time for the complete
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Table 5.6: Average Results of the FIN experiment. Shown are the average values of all
scenes and time frames, sorted by algorithm. The right half of the columns shows the
average time spent in pre-processing (tpre), the average time spent in the plane detection
itself (tcalc), and the average time spent in post-processing steps (tpost). The rightmost
column shows the average total calculation time stot. Note that the absence of post-
processing steps is denoted as ”/”. All times are measured in seconds.

Algorithm Precision Recall F1-Score tpre tcalc tpost ttot
RSPD 57.30% 60.75% 58.70% 14.36 0.19 / 14.55
OPS 69.38% 29.23% 39.43% 4.61 0.89 0.13 5.63

3DKHT 49.76% 44.40% 46.48% 0.14 0.29 / 0.43
OBRG 49.23% 27.42% 33.94% 6.03 14.70 0.35 21.08

computation ttot of a time step with an average of 0.43s. OPS achieves comparatively
average total calculation time with ∼6s, and OBRG takes the longest overall to compute
a time step with more than 20s.

RSPD and 3D-KHT achieve Real-Time Plane Detection applicability. Additionally,
3D-KHT also achieves Total Real-time applicability, with an average total time of 0.43s.
OPS can almost be considered to be in RTcalc with a subtotal calculation time of 1.02s,
thereby taking 0.02s too long. With an average pre-processing time of ∼6s and an average
of ∼15s spent in plane detection, OBRG qualifies for neither of the introduced definitions
of real-time.

Relationship of Time and Size As mentioned before in Paragraph 5.1.1, we are
interested in the relationship between the size of the point cloud and the corresponding
calculation time. In Figure 5.2, we compare the processing times of each time step to the
number of points in the auditorium scene of the FIN data set.
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Figure 5.2: Time spent in pre-processing tpre, plane detection tcalc, post-processing tpost,
and total calculation time ttot of the auditorium scene, and point cloud size of each time
frame. Note that both y-axes are scaled logarithmically to the base of ten. Time Frames
are defined in Subsection 5.1.1.
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Note that we created similar graphs for the other scenes of the FIN dataset. However,
they do not introduce new information into the argumentation and are presented in Ap-
pendix A for completeness and spatial reasons. We consider the auditorium scene as the
most representative because it contains the longest recording, and thus contains the most
data.

The pre-processing times of RSPD and OBRG are noticeably proportional to the point
cloud size. In contrast, for OPS and 3D-KHT, the pre-processing times seem to correlate
with the plane detection times since both show similar spikes. The plane detection steps
of OPS and 3D-KHT do not seem to depend on the point cloud size, as both seem to
be limited by an upper bound, ∼1s for 3D-KHT and ∼6s for OPS. The pre-processing
and plane detection times of OBRG grow rapidly in the beginning but afterward, show
a linear growth in relation to the cloud size. The post-processing times of OPS fluctuate
between 0 and the duration of plane detection. After the spike in the beginning, the tpost
values of OBRG seem to be consistent.

The apparent upper bound of ∼1s in the calculation times qualifies 3D-KHT for Total
Real-time applicability. We consider RSPD Real-Time Plane Detection applicable, as the
duration of the plane detection step consistently stays under 1s.

Summary FIN Experiment OPS has the highest average Precision, and RSPD has
the largest percentages of Recall and the F1-Score . Additionally, RSPD has the lowest
tcalc value among the algorithms, with an average of 0.19s per time frame. In contrast,
RSPD has the longest pre-processing time with 14.36s on average. The algorithm with
the shortest pre-processing and the shortest total time is 3D-KHT with tpre = 0.14s and
ttot = 0.43s, respectively.

In general, the calculation times of RSPD and OBRG seem to depend on the point
cloud size. However, the time RPSD spends in pre-processing is significantly higher than
in its plane detection step. In contrast, the pre-processing and plane detection times of
OBRG seem to converge at the end. The calculation times of OPS and 3D-KHT seem
to be independent of the point cloud size and consistently stay under an upper bound.
However, 3D-KHT has a smaller upper bound than OPS.

The development over time supports the average calculation times of 3D-KHT, as
the calculation seems independent of the cloud size. Thereby, we determine 3D-KHT to
be Total Real-time applicable. Furthermore, RSPD achieves Real-Time Plane Detection
applicability in the FIN experiment, as the plane detection step takes < 1s for all time
frames. Lastly, the average subtotal calculation time of OPS is slightly longer than 1s.
However, given the apparent upper bound and considerable fluctuations, we cautiously
consider OPS to be Real-Time Plane Detection applicable in the FIN experiment.
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5.2.3 Comparison
When comparing Table 5.5 and Table 5.6, a pattern emerges: OPS has the highest Pre-
cision value, RSPD yields the highest Recall and F1-Score, and 3D-KHT has the lowest
average total processing time.

Observing Figure 5.2 and Figure 5.1, common features are noticeable: The curve shape
of RSPD is very similar for both experiments, linearly dependent on the point cloud size,
and the tpre accounts for 99% of the total calculation time ttot. In both experiments,
the post-processing time of OPS fluctuates. The post-processing of OBRG seems to be
oriented around a given value, however, this value differs between the experiments (∼0.3s
for the FIN experiment and ∼3s for the 2D-3D-S experiment). 3D-KHT scores very low
processing times in both experiments.

However, there are also notable differences. Whereas the calculation times of 3D-KHT
seem to be proportional to the point cloud size in the 2D-3D-S experiment, they show no
such relation during the FIN experiment. It is worth noting that the cloud sizes widely
differ between the experiments, as the maximum size of the FIN experiment (∼0.75 · 106)
is very small, compared to largest scene of the 2D-3D-S dataset (∼9 · 106). Nonetheless,
since Figure 5.1 portrays a proportionality, even for smaller clouds, the reason for different
curves is likely the difference of parameterization.

In Paragraph 5.2.1, we report that no algorithm is real-time applicable. We state, that
RSPD and 3D-KHT can be considered Real-Time Plane Detection applicable since the
cloud sizes vary and the difference between their average tcalc times and the threshold of 1s
is very small. In Paragraph 5.2.2, we consider 3D-KHT totally real-time applicable due to
the observed upper bound in calculation time in combination with a low average ttot value
of 0.43s. Additionally, we consider RSPD ∈ RTcalc because RSPD takes consistently
less than 1s during the plane detection step. The results of neither experiment show a
real-time applicability of OBRG.

5.3 Summary
OBRG achieves neither the highest nor lowest values in any experiment. OPS has the
highest Precision in both experiments. Due to Recall and the F1-Score, RSPD has the
highest overall accuracy in both experiments. The pre-processing of RSPD takes the
longest time of all algorithms. In contrast, RSPD has the smallest average tcalc value in
the FIN experiment. 3D-KHT has the lowest total computation time in both experiments,
and in the 2D-3D-S experiment, it outperforms the plane detection time of RSPD.

3D-KHT is Real-Time Plane Detection applicable in the 2D-3D-S experiment and
totally real-time applicable in the FIN experiment. RSPD achieves Real-Time Plane
Detection applicable in both experiments. We consider OPS to be Real-Time Plane
Detection applicable. These achieved real-time applicabilities are summarized in Table 5.7.
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Table 5.7: Real-time applicabilities of the selected plane detection algorithms given the
results from both experiments. Note that RTtot implies RTcalc. ”/” denotes no real-
time applicability. ”*” denotes that the given real-time applicability is coupled with a
restriction. We refer to the text for details.

Experiment RSPD OPS 3D-KHT OBRG

2D-3D-S RTcalc* / RTcalc* /
FIN RTcalc RTcalc* RTtot /
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Chapter 6
Conclusion

Modern man-made environments, especially indoors, contain a large number of planar
structures. The automatic detection thereof has become a vital part of many Augmented
or Virtual Reality systems. Underlying temporal constraints often dictate the processing
times of these applications and, therein, the process of plane detection. Real-time plane
detection is already possible, although the hardware cost that enables efficient and pre-
cise detection is likely not affordable to the general consumer. Moreover, the real-world
applicability of plane detection algorithms depends on numerous aspects rendering the
selection of a suitable algorithm non-trivial. Therefore, we performed a uniform com-
parison of algorithms on affordable hardware to evaluate their applicability in a realistic
environment.

A set of plane detection algorithms, appropriate datasets, and a definition of real-time
are needed to perform this evaluation. In the Concept (see Chapter 3), we first introduced
a set of helpful criteria for the subsequent selection of plane detection algorithms. We
followed the same approach for the selection of datasets. Lastly, we introduced two defi-
nitions of real-time, wherein we differentiate between real-time calculation time including
and excluding pre-processing.

In Chapter 4, we provided details regarding the implementation of the selected algo-
rithms. Moreover, since its provided ground truth does not focus on planes, we described
our manual segmentation process of the 2D-3D-S dataset. Lastly, we presented the novel
FIN dataset and outlined how the corresponding ground truth is dynamically created
based on a single ground truth of the last recorded point cloud.

We enter Chapter 5 with the evaluation protocol. Therein, we outline the evaluation
metrics to calculate and specify the algorithm parameterizations of each experiment. We
presented and subsequently compared the individual results. In both experiments, RSPD
has the overall best accuracy among the algorithms. While OPS and OBRG achieve a
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similar average Precision, no other algorithm yields comparable values for Recall or F1-
Score (see Tables 5.5 and 5.6). The accuracy metrics of all algorithms drop by roughly 30%
between the experiments. The results uniformly show that 3D-KHT is the fastest among
the selected algorithms. The Hough Transform-based algorithm proposed by Limberger
and Oliveira [32] ran, on average, 32x faster than the other algorithms. As Table 5.7
indicates, 3D-KHT is the only algorithm that achieves RTtot in the FIN experiment,
which is supported by the apparent upper limit shown in Figure 5.2. RSPD achieves
RTcalc, and OPS borders on Real-Time Plane Detection applicability as well. RSPD has
the longest pre-processing times with an average of ∼63s for the 2D-3D-S experiment and
∼15s for the FIN experiment, respectively. In contrast, RSPD has the shortest average
plane detection times in the FIN experiment and takes only a tenth of a second longer
than 3D-KHT’s plane detection phase in the 2D-3D-S experiment.

Based on these results, we conclude that 3D-KHT is the only algorithm that achieves
Total Real-Time applicability. However, considering accuracy, 3D-KHT is inferior to
RSPD.

6.1 Limitations
This section deals with the limitations of the concept, evaluation, and results thereof.

Algorithm Parameterization Since the focus of this work is not the optimization of
plane detection algorithms but rather the evaluation thereof, the parameterizations used
during the experiments are likely non-optimal. Furthermore, a thorough optimization,
including its required effort, would go beyond the scope of this work. Integrating a plane
detection algorithm into an application would require further parameter optimization with
regard to the expected environment, the used sensors, and the general use case.

Manual Segmentation The subjective nature of the manual segmentation process
described in Section 4.3 influences the evaluation. While this does not seem to pose a
dramatic effect on the 2D-3D-S results, the segmentation can lead to errors due to the
level of noise in the FIN dataset. For instance, with increasing ”thickness” of planes, the
number of possible orientations of a detected plane also increases (see Figure 6.1). The
red segment in the figure represents the ground truth we would choose to represent the
plane as it is more aligned to the true wall, and has a lower ratio of noise compared to the
other options in green and blue. If an algorithm detected a plane in one of the four other
variants, both the voxel overlap and the accuracy would decrease, even if both planes
correspond.
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Used Technology A small caveat to note is that the FIN dataset is recorded using
a specific combination of technology, namely Intel’s T265, D455, and the corresponding
software including RTAB-MAP. Since these sensors were chosen as representatives for con-
sumer off-the-shelf hardware, the results point out the general applicability in a realistic
environment. However, the results may vary when employing different technology.

Figure 6.1: Possible Plane Orientations. Shown is the top view of a wall with a width of
∼1m from the conference room scene of the FIN dataset is shown on the left. The colors
indicate different possible plane orientations.

6.2 Future Work
In this section, we elaborate on topics of further research.

Normal Estimation We see the most potential for improvement in the pre-processing
steps of the algorithms. In our experience, the extent of the normal vector estimation
influences the pre-processing time. For instance, RSPD estimates the normal vectors of
the entire point cloud, whereas OPS only estimates a certain percentage of the point
cloud. The differences in pre-processing times (see Tables 5.5 and 5.6) raise the question
of what the extents of real-time applicability are if the normal vectors of the point cloud
are known before the plane detection step in the application (compare Figure 3.1). For
instance, RTAB-MAP can estimate and export the normal vectors of the point cloud by
modifying its odometry approach. Therefore, RSPD, OPS, and OBRG would not need
to estimate the normal vectors, reducing the pre-processing time greatly. However, this
would require further research.
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Cloud Size Reduction When recording environments similar to the hallway or the
auditorium scene, it is often the case that the spatial dimension of the point cloud grows
beyond the distance limitations of the sensor, e.g., the recorded hallway spans longer than
the sensor can ”see”. It is, therefore, not necessary to re-calculate the planes in areas past
the sensor’s reach. We are interested in a plane detection method that restricts the plane
detection to a certain radius around the sensor’s position and a subsequent merging of old
and new planes. Additionally, this could be the basis for a plane-based SLAM approach.

Outdoor Environment In Chapter 1, we limited ourselves to evaluating plane detec-
tion algorithms in indoor environments. Therefore, we cannot make any statements about
the applicability in outdoor environments. Since we compiled results in a realistic indoor
environment, it would be interesting to evaluate the generalization of these algorithms.
As discussed throughout this thesis, a comparison needs uniformity. Since we created an
indoor dataset, selected datasets, and provided all necessary metrics and definitions, only
an appropriate dataset is needed.
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Appendix A
FIN Scene Results

Figure A.1: Time spent in pre-processing tpre, plane detection tcalc, post-processing tpost,
and total calculation time ttot of the conference room scene, and point cloud size of each
time frame. Note that both y-axes are scaled logarithmically to the base of ten. Time
Frames are defined in Subsection 5.1.1.
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Figure A.2: Time spent in pre-processing tpre, plane detection tcalc, post-processing tpost,
and total calculation time ttot of the hallway scene, and point cloud size of each time
frame. Note that both y-axes are scaled logarithmically to the base of ten. Time Frames
are defined in Subsection 5.1.1.
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Figure A.3: Time spent in pre-processing tpre, plane detection tcalc, post-processing tpost,
and total calculation time ttot of the office scene, and point cloud size of each time frame.
Note that both y-axes are scaled logarithmically to the base of ten. Time Frames are
defined in Subsection 5.1.1.
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Appendix B
FIN Dataset Scenes

Figure B.1: Full-size view of the hallway scene of the FIN dataset.



Figure B.2: Full-size view of the conference room scene of the FIN dataset.
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Figure B.3: Full-size view of the office scene of the FIN dataset.
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Figure B.4: Full-size view of the hallway scene of the FIN dataset.
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